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0.1 Introduction
Marmote is a C++ API for the construction and the analysis of Markov Chains. It is an evolution of the
(legacy) marmoteCore API, itself developed within the MARMOTE project (MARkovian MOdeling Tools
and Environments) funded by the Agence Nationale de la Recherche (France), number ANR-12-MONU-0019.
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The MARMOTE Software platform was developed with the intent to provide to the general scientist a
“modeling environment” which gives access to algorithms developed by specialists. It is intended to be as
open as possible, component-oriented, and contributive.

(legacy) marmoteCore was developed by Alain Jean-Marie, Issam Rabhi and Hlib Mykhailenko.
Marmote is currently developed by Alain Jean-Marie, Emmanuel Hyon and Patrick Brown.

0.2 Markov chains, Markov modeling, Markov modelers
For the purposes of Marmote, Markov chains (or Markov processes) are a class of stochastic processes X(t),
t ∈ Z or R

• evolving on a state space E

• described by a transition rule

i −→ j with probability pij , for discrete-time Markov chains
i −→ j with rate λij , for continuous-time Markov chains

• from some initial state.

The practical success of Markov chain as models for real-world situations is due in part to the fact that many
properties of Markov chains can be obtained

• by analyzing the graph of transitions,

• by solving problems of linear algebra.

Markov modeling consists in

• constructing Markov models

• analyzing them:

– determine qualitive properties: structure, ergodicity, stability ...
– compute metrics related with probabilities, frequencies, times, durations ...

At the risk of caricaturing somewhat, the activities of a Markov modeler can be classified in two main
“profiles”:
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Theoretician : Aims at developing MC solution methods

• as generic as possible
• yet taking into account the structure of the model

This activity involves:

• invent new formulas/algorithms
• program new methods
• test them on examples/benchmarks
• compare with previous methods (exec. time, accuracy)

Practician : Develops Markov models for specific applications
This activity involves:

• describe/represent model (parameters, structure, ...)
• test model with simulation
• solve model (analytic, numerical), loop until model passes tests
• execute experimental plans
• compare different models (e.g. simplifications)

Marmote has the ambition to fit the needs of both categories.

0.3 Architecture
The general idea of the software is sketched in the following diagram.

SWM ... Kepler marmoteDTK
Thematic MarmoteQueue MarmoteGame ... ... MarmoteMDP
Generic MarmoteMarkovChain
Auxiliary Psi Xborne R ... MarmoteCore

The purpose of Marmote is to provide the generic API devoted to Markov Chains, in the sub-package
MarmoteMarkovChain. The code for Markov chains itself is developed using objects provided by the MarmoteCore
sub-package, or possibly external libraries or applications (e.g. imported from Xborne or Psi), or methods
of some programming language (e.g. R, Python, Scilab/Matlab, etc.).

At higher levels, thematic libraries using Markov objects can be developed. MarmoteMDP is a library
devoted to Markov Decision Processes. It is described in a separate document. As possible examples,
MarmoteQueue and MarmoteGame are fictitious libraries which could exist one day, devoted to queueing
theory and game theory models.

Ultimately, the libraries can be accessed either directly in applications, or linked to Scientific Workflow
Management systems such as Kepler.

Marmote is developped in C++ in order to ease the resuse of legacy C-style code. It offers naturally an
API in C++. An API in Python is currently under development.
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Chapter 1

Installation

This section provides instructions for installing the MarmoteCore library and compiling applications. These
instructions, together with many commented examples, are available at https://marmote.gitlabpages.
inria.fr/marmote/.

The recommended installation and compilation procedure is via conda and cmake. Conventional instal-
lation via “tarballs” is possible for some architectures, but not supported.

1.1 Installing Anaconda/miniconda
Before installing Marmote you will need to install Anaconda or miniconda following instructions at https:
//conda.io/miniconda.html.

The command-line instructions are executed in a terminal window (linux and macOS) or in a “anaconda
prompt” or a “conda powershell” (MS Windows).

1.2 Preparing a Marmote workspace
Throughout these instructions, the directory MAR_DIR is used as the root directory. First create this directory
and move into it:

$ mkdir MAR_DIR
$ cd MAR_DIR

1.3 Preparing the conda environment
The next step is to create the conda environment, containing the required conda packages, and activate it.
This environment will be called marmote-use. First download the conda configuration file marmote-use.yaml
corresponding to your architecture, from https://marmote.gitlabpages.inria.fr/marmote/instructions.
html. Then execute:

$ conda env update -f marmote-use.yaml
$ conda activate marmote-use

Alternative: create the conda environment specifying the channels and the minimal packages on the
command line.

$ conda create -n marmote-use
$ conda install -c marmote -c conda-forge marmote boost cmake -n marmote-use
$ conda activate marmote-use
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1.4 Compiling application examples
Compiling an application using Marmote consists in creating a cmake. This simply requires placing the C++
source files and a CMakeLists.txt configuration file in some directory. 1

This process is explaned here using the illustrating examples available at https://marmote.gitlabpages.
inria.fr/marmote/examples.html.

1.4.1 Compilation of a single file
First download the source code and the configuration file.

Next, execute:

$ mkdir build
$ cd build
$ cmake ..
$ make

This produces the executable example1. To run the application:

$ ./example1 3 0.2 0.2 0.4

1.4.2 Compilation of two project files at the same time
First download the source files for example #1 and example #MDP10, together with the configuration file.
Then execute:

$ mkdir build
$ cd build
$ cmake ..
$ make

This produces two executables example1 and exampleMDP10. To run the applications:

$ ./example1 3 0.2 0.2 0.6
$ ./exampleMDP10

1.4.3 Compilation all examples
First download the source files as a tar archive or a zip archive, together with the configuration file. Unpack
the source files:

$ tar xf all_examples.tar

or

$ unzip all_examples.zip

Then execute:

$ mkdir build
$ cd build
$ cmake ..
$ make

This produces all executables example1 to example7 and exampleMDP10 to example40. To run the applica-
tions:

1Optionally, a separate directory can be created for each project.
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$ ./example1 3 0.2 0.2 0.6
$ ./example7
$ ./exampleMDP10
$ ./exampleMDP20
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Chapter 2

Programming with Marmote

2.1 Introduction
Practical Markov modeling usually involves the following tasks:

create a Markov model, by specifying the state space and the transitions

analyze the structure of the model, so as to detect qualitative properties and check that the model created
is consistent with the model intended

compute metrics associated with the model.

With Marmote, these tasks are performed through the creation of objects in a C++ program, and the
execution of methods associated with these objects.

2.1.1 The Main Objects
Marmote rests on 4 abstract, high-level classes:

• MarmoteSet for representing state spaces

• TransitionStructure for representing transitions

• Distribution for representing probability distributions

• MarkovChain for representing Markov chains.

The classes MarmoteSet, Distribution and TransitionStructure and their different instances are
provided by the module MarmoteCore. The class MarkovChain and its different instances is provided in the
module MarmoteMarkovChain.

These main classes and their derived classes will be described in depth in Chapter 3. In the present
chapter, we show through examples how they are used.

2.1.2 Constructing Markov Chains
Creating an instance of MarkovChain objects can be done in one of three ways:

1. read the generator (and the state space) from a file

2. use a predefined class

3. create the generator “by hand”.

We describe these three ways below.
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2.1.2.1 Getting a Markov Chain from a file

The following code shows three examples of creations of a MarkovChain object by reading the model from
one or several files:

MarkovChain* c1 = new MarkovChain( "Xborne", NULL, 0, "rw1d" );
MarkovChain* c2 = new MarkovChain( "PSI", NULL, 0, "rw1d" );
MarkovChain* c3 = new MarkovChain( "Ers", NULL, 0, "rw1d" );

The name of the file is not directly specified. Instead, a model name is supplied (here: rw1d) and a file
format is specified (here: Xborne or PSI or Ers).

The formats available are described in Appendix C, p. 66. See also 3.2.1.3.

2.1.2.2 Using existing Markov chains

MarmoteCore provides Markov models of several important families identified in the literature. See Ap-
pendix B, p. 64.

Currently implemented (a small part of the Markov Zoo): TwoStateContinuous and TwoStateDiscrete,
the two-state Markov chains in continuous and discrete time, Homogeneous1DRandomWalk, HomogeneousMul-
tidRandomWalk, Homogeneous1DBirthDeath and HomogeneousMultidBirthDeath, models of random walks,
in continuous or discrete time, PoissonProcess and MMPP, models of arrival processes in continuous time,
and Felsenstein81, a model for BioInformatics.

The following code shows how these models are used.

double pro[4] = { 0.1, 0.2, 0.3, 0.4 };
Felsenstein81* c1 = new Felsenstein81( pro, 10.0 );

Homogeneous1DRandomWalk* c3 = new Homogeneous1DRandomWalk( 10, 0.4, 0.3 );

The constructor of the Felsenstein81 object needs an array of probabilities pro. The constructor for
Homogeneous1DRandomWalk just needs a size parameter and two transition probabilities. See respectively
§3.2.2.9 and §3.2.2.4.

2.1.2.3 Making a Markov chain

Creating a complex Markov chain is typically done in three steps:

1. create a MarmoteSet object, containing the state space representation

2. create a TransitionStructure object with the transitions characterizing the model,

3. create the Markov chain from this object.

The first step is optional if the state space is simple enough.
A typical example of creation code following this pattern is:

LayeredStateSpace* sp = new LayeredStateSpace( N, E1, E2, M, nu );
SparseMatrix* gen = MakeGenerator( sp, N, E1, E2, M, nu );
MarkovChain* myMC = new MarkovChain( gen );

In this example, SparseMatrix is a class deriving from TransitionStructure, provided by MarmoteCore.
The user has created a class LayeredStateSpace which inherits from MarmoteSet. Its construction depends
on the model parameters N, E1, E2, M and nu. The user has also programmed a procedure MakeGenerator
to actually perform the construction.

The code of this method uses the object of type MarmoteSet with the following pattern:
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SparseMatrix* MakeGenerator(LayeredStateSpace* sp, ... ) {

SparseMatrix* gen = new SparseMatrix( sp->Cardinal() );

int stateBuffer[5]; // the state space has 5 dimensions
sp->FirstState(stateBuffer);

int idx = 0;
do {

...
// destination state stored in nextBuffer
nextBuffer[0] = MIN( stateBuffer[0] + 1, someBound );
...
gen->addToEntry( idx, sp->Index(nextBuffer), someRate );
gen->addToEntry( idx, idx, -someRate );
...

sp->NextState( stateBuffer );
idx++;

} while (!sp->IsFirst(stateBuffer));
...
return gen;

}

In this procedure, the states of the state space are enumerated in sequence, using the three constructs:

initialization with sp->FirstState(stateBuffer), which sets the state (represented in the array stateBuffer
to the “first” state of the state space;

increment of the state with sp->NextState(stateBuffer), which moves the state to the next one in the
enumeration order;

termination test with sp->IsFirst(stateBuffer) which tests whether the enumeration came back to
the initial state.

Inside the loop, the current state is modified by the different events to be considered. The result is stored
in the variable nextBuffer. The rates/probabilities associated with the transition are then added to the
generator being constructed with the instruction gen->addToEntry(). The index of the destination state is
obtained from the state buffer with the fourth construct: sp->Index(nextBuffer).

2.2 Computing on Markov Chains
Many solution methods are available for MarkovChain objects and derived classes.

In the following example, we show a comparison of computations for the stationary distribution:

// use of specific methods for F81
Felsenstein81* c1 = new Felsenstein81(...);
Distribution* d1 = c1->StationaryDistribution();
Distribution* d2 = c1->SimulateChain(...)->distribution();
// comparison
cout << "Distance L1(d1,d2) = " << d1->distanceL1(d2) << endl;
// use of generic methods for MCs
MarkovChain* c2 = static_cast<MarkovChain*>(c1);
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Distribution* d3 = c2->StationaryDistribution_GaussSeidel();
Distribution* d4 = c2->StationaryDistribution_PowerMethod();
Distribution* d5 = c2->StationaryDistribution_Xborne_LowBound();
Distribution* d6 = c2->StationaryDistributionSample(...);
Distribution* d7 = c2->SimulateChain(...)->distribution();
Distribution* d8 = c2->SimulateChain2(...)->distribution();

In the first part of the code, an object of class Felsenstein81 is created, and two solution methods are used:
first StationaryDistribution() then SimulateChain(). The first one computes exactly the stationary
distribution, whereas the second one performs Monte Carlo simulation and returns, in particular, an empirical
distribution. The distance between the two distributions is evaluated.

In the second part of the code, the Felsenstein81 object is cast to a higer-level MarkovChain object,
which has more solution methods.
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Chapter 3

Marmote reference
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3.1 Basic types and constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
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3.4.1 Common features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.2 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 The Distribution object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.1 Common features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.2 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

We describe in this chapter the four main classes of marmote and their derived classes. We present the
general interface of these top-level classes. For derived classes, we describe when the general interface has
been re-implemented, and when specific methods have been introduced.

As a general rule, attributes of marmote’s objects are private and can be accessed (read or write) only
through specific “accessor/mutator” methods.

3.1 Basic types and constants
Marmote uses a few numeric and symbolic types. While using standard type like int or long int will work
most of the time, it is advised to conform to this type convention.

timeType : describing whether the time model of the Markov Chain is discrete or contiuous; may be either
of DISCRETE, CONTINUOUS, UNDEFINED, UNKNOWN.

stateType : the integer type used for state indices in state spaces. It may be negative since practical
modeling sometime uses negative indices. It is currently implemented as long long int but it is
discouraged to rely on this assumption.

cardinalType : the integer type used for the cardinal of state spaces. It may not be negative. It is currently
implemented as unsigned long long int but it is discouraged to rely on this assumption.
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cacheType : related to Monte-Carlo simulation of Markov Chains (see Section 3.2.1.6). May be either of
CACHE_FULL, CACHE_BASIC and CACHE_NONE.

simLenType : related to Monte-Carlo simulation of Markov Chains (see Section 3.2.1.6). It is currently
implemented as unsigned long int but it is discouraged to rely on this assumption.

inoutFormat : formats of representation of objects in files for input/output. Some formats apply specifi-
cally to matrices or vectors or sets, others apply to several object types.

FORMAT_NONE : Unspecified format
FORMAT_MARMOTE : Marmote format, also known as “ERS” format, described in Appendix C.3; applies

to all objects
FORMAT_MATLAB_FULL,FORMAT_MATLAB_SPARSE : Matlab formats for matrices; apply to transition struc-

tures
FORMAT_SCILAB_FULL,FORMAT_SCILAB_SPARSE : Scilab formats for matrice, described in Appendix C.5;

apply to transition structures
FORMAT_MATRIXMARKET_SPARSE, FORMAT_MATRIXMARKET_FULL : MatrixMarket formats for matrices;

apply to transition structures
FORMAT_MAPLE : Maple format with full matrices; applies to transition structures
FORMAT_R : Matrix format for the R environment, described in Appendix C.4; applies to transition

structures
FORMAT_NUMPY : Python format with full matrices; applies to transition structures
FORMAT_MARCA : Format for the MARCA software, described in Appendix C.2
FORMAT_MARMOTE_FULL : Marmote format with full matrices; applies to transition structures
FORMAT_PSI3 : Psi3 yaml format; applies to transition structures
FORMAT_XBORNE_CII, FORMAT_XBORNE_CUU, FORMAT_XBORNE_RII : Xborne formats for matrices, de-

scribed in Appendix C.1; apply to transition structures
FORMAT_XBORNE_SIZE : Xborne format for the matrix size specification ".sz"; applies to transition

structures
FORMAT_FLAT : Flat format for sets
FORMAT_STRUCTURED : Structured format for sets
FORMAT_XBORNE_SET : Xborne format for set files ".cd", described in Appendix C.1

The default format is usually FORMAT_MARMOTE.

3.2 The MarkovChain object
3.2.1 Common features
The methods common to MarkovChain and derived classes are summarized in the following tables, grouped
by functionalities.

3.2.1.1 Definition

This class is accessed with the directive

#include <marmoteMarkovChain/marmoteMarkovChain.h>
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3.2.1.2 Attributes and accessors
timeType type_ time type: discrete or continuous
stateType state_space_size_ size of the state space
MarmoteSet* state_space_ the state space
TransitionStructure* generator_ transition structure of the chain
DiscreteDistribution* init_distribution_ initial distribution of the process
string model_name_ name of the model
string format_ representation format for the model

The “size” of the state space is the number of states it contains. It coincides with the size of the
MarmoteSet object which represents the state space.

The generator is supposed to describe the transition structure of the model. It may however be left to
null in certain models where the transition structure is implicit.

The initial distribution is used for Monte Carlo simulations. If not set, the Dirac distribution at the state
numbered 0 is used by default. It is however advised to set this variable.

The model name and its “format” are usually deduced when the object is created by reading it from a
file. See below.

stateType state_space_size() get the size of the model
TransitionStructure* generator() get the generator
void set_init_distribution(DiscreteDistribution* d) provide the initial distribution
void setGenerator( TransitionStructure* tr ) provide the generator
void setFormat(string format) set the representation format
void setModelName(string modelName) set the model name
string modelName() get the model name
string format() get the format

Note that there is currently no accessor for the variable state_space_.

3.2.1.3 Constuctors

The class provides three constructors:1

MarkovChain(stateType sz, timeType t);
MarkovChain(TransitionStructure* tr);
MarkovChain(string format, string param[], int nbParam, string model_name );

The constructor MarkovChain(stateType sz, timeType t); creates a Markov chain object over a state
space of size sz and with type given by t. The space type (stateType) is an integer, see Section 3.1. The
time type can be DISCRETE or CONTINUOUS. The state space is implicitly a MarmoteInterval object.

The construction of the transition structure is left to the user.
In the constructor MarkovChain(TransitionStructure* tr), the transition structure is provided. The

size of the state space is deduced from it.
The third version creates a MarkovChain object by reading from one or several files. The parameter

format specifies the format or language in which the model is specified. Formats available are: ERS,
PSI1/MARCA and XBORNE. See Appendix C for a description of these formats. Depending on this
format, one or several file names or extensions must be provided. Those are listed in the param array, the
size of which is defined by nbParam. The parameter model_name serves as a common prefix for file names.

When a problem occurs during the construction (e.g. a file is not present, or when its parsing fails...), a
functional MarkovChain object is returned, but with an zero-sized state space and an empty generator.

1Plus a Copy() method.
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3.2.1.4 Pseudo-constructor

A fourth way to create Markov chain objects is to use the class (static) method:

RandomMarkovChain(int multipleOfPeriod, stateType nStates);

This creates randomly a Markov Chain with a specific periodicity given by d =multipleOfPeriod and
nStates states. The number of states is actually always a multiple of d: d× ⌊nStates/d⌋.

3.2.1.5 Structural analysis

Methods are provided to perform a structural analysis of the Markov chain (in fact, of its transition structure).
They come in two groups:

std::vector<cardinalType> AbsorbingStates() find the states that are absorbing
std::vector<std::vector<cardinalType> > RecurrentClasses() computes recurrent classes
std::vector<std::vector<cardinalType> > CommunicatingClasses() computes communicating classes
bool IsIrreducible() checks whether the chain is irreducible
bool IsAccessible(stateType from, checks whether a path

stateType to) exists between two states
stateType Period() computes the periodicity
std::vector<MarkovChain*>* SubChains() computes the decomposition

in irreducible subchains

std::vector<int> AbsorbingStatesR() find the states that are absorbing
std::vector<std::vector<int> > RecurrentClassesR() computes recurrent classes
std::vector<std::vector<int> > CommunicatingClassesR() computes communicating classes
bool IsIrreducibleR() checks whether the chain is irreducible
bool IsAccessibleR(int from, checks whether a path

int to) exists between two states

The first group depends on the BFS exploration methods developed within MarmoteCore. The second group
is an interface to the methods of the markovchain package of R. This feature is not available in the current
version.

These methods refer to the notion of communication in Markov chains: the existence of a path that goes
from one state to another. The method IsAccessible() checks this for given pairs of nodes.

The “classes” are equivalence classes for the communication relationship. Those are computed by the
method CommunicatingClasses(). Among the classes, some are recurrent. Those are computed by
RecurrentClasses(). Both methods return a list of classes (using the vector template of C++’s Standard
Template Library) each class being itself a list of nodes.

Absorbing states are those for which Ti,i = 1 in discrete time or Ti,i = 0 in continuous time. They are
computed by AbsorbingStates() and returned as a list of nodes.

3.2.1.6 Monte Carlo Simulation (forward)

Monte Carlo simulation consists in generating a trajectory of the Markov chain model using (pseudo-)random
numbers. The standard methods uses the data from the chain’s generator to sample transitions from one
state to the next one. Details vary slightly according to the time type of the chain.

The generic interface for Monte Carlo simulation is:
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SimulationResult* SimulateChain(double t, bool stats, bool traj, bool incr, bool trace)
SimulationResult* SimulateChainDT(long t, bool stats, bool traj, bool trace)
SimulationResult* SimulateChainCT(double t, bool stats, bool traj, bool incr, bool trace)
SimulationResult* SimulateChainCT_AllOpt(double t, bool stats, bool traj, bool incr,

bool trace, bool fullState, cacheType ctype )
SimulationResult* SimulateChainDT_AllOpt(long t, bool stats, bool traj,

bool trace, bool fullState, cacheType ctype )
SimulationResult* SimulatePSI(long t, bool stats, bool traj, bool trace)
SimulationResult* SimulateChainR( double t, bool stats, bool traj, bool trace );

The methods SimulateChainDT and SimulateChainDT_AllOpt are specific to discrete-time Markov
chains. Similarly, method SimulateChainCT and SimulateChainCT_AllOpt are specific to continuous-time
Markov chains. The method SimulateChain is the general entry point: it detects the type of the chain and
uses one of SimulateChainCT or SimulateChainDT to perform the simulation. The method SimulateChainR
is an interface to the simulation procedure for discrete-time chains in the R package markovchain.

Input Parameters. Four parameters are common to all methods:

t : the maximal time up to which the trajectory should be simulated. For discrete-time chains, this is an
integer number and it also represents the number of steps to be simulated. For continuous-time chains,
the trajectory is simulated up to this value, which may involve an arbitrary number of transitions.

stats : a flag specifying whether statistics must be collected along the way. The standard statistic2 is to
collect empirical state probabilities.

traj : a flag specifying whether the trajectory should be stored during the simulation. Storing trajectories
may require substantial amounts of memory and may not be useful if statistics are collected and/or
the trajectory is printed along the way.

trace : a flag specifying whether the trajectory should be printed (to the standard output) along the way.
Printing trajectories may slow down the execution of the simulation, but may save memory and offload
the burden of statistics to another application.

The fifth parameter is specific to continuous-time simulations:

incr : a flag specifying whether the time increments between transitions should be collected, and printed
along the trajectory if the trace flag is set.

Two more parameters are specific to methods SimulateChainDT_AllOpt and SimulateChainCT_AllOpt,
which allow a finer control on the simulation and its output:

fullState : a flag specifying whether the complete representation of the state should be printed when
trace is active; when set, the method PrintState() of the state space (see Section 3.4) is called after
the index of the state is printed;

cacheType : controls the way transition distributions are stored during the simulation. The possibilities are
CACHE_FULL, CACHE_BASIC and CACHE_NONE. Under CACHE_FULL (which is the default for simulations),
all transitions are stored. This saves times when states are visited several times, but is impractical for
large state spaces, and impossible for infinite state spaces. Under CACHE_BASIC, the two last transitions
are kept in cache. Under CACHE_NONE, transition distributions are computed every time.

2This behavior may be modified in the implementation of these methods in derived classes.
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Output. Simulation results are stored in a versatile specific object: SimulationResult. The attributes of
a SimulationResult object are:

timeType type_ type of the Markov chain / trajectory
MarmoteSet* state_space_ state space of the samples
cardinalType state_space_size_ size of the state space
simLenType trajectory_size_ number of transitions in the trajectory
bool has_distrib_ flag corresponding to parameters *_cumTime_
bool has_trajectory_ flag corresponding to parameters *_dates_
bool has_increments_; flag corresponding to parameter increments_
bool trace_; indicator of whether trajectory is traced
std::vector<double> CT_dates_; table of times in the trajectory
std::vector<simLenType> DT_dates_; table of times in the trajectory
std::vector<double> increments_; table of time increments in the trajectory
std::vector<cardinalType> state_idx_; table of states in the trajectory
cardinalType max_state_; maximal state reached, in case of infinite state space
std::vector<simLenType> DT_cumTime_; table of cumulated times in states for discrete time
std::vector<double> CT_cumTime_; table of cumulated times in states for continuous time
cardinalType last_state_; state of last record
double last_time_; time of last record, in continuous-time
std::ostream* out_; stream to which tracing is sent
bool fullstate_; indicates whether the indices should be expanded into states

Interface: methods from SimulationResult

// constructors
SimulationResult(int size, timeType t, bool stats)
SimulationResult(string format, string modelName, bool stats)

// accessors
void setTrajectory(bool v)
void setTrajectorySize(int l)
void setTrajectory(double* d, int *s)
void setDistribution(DiscreteDistribution *d)
DiscreteDistribution* distribution()
int trajectorySize()
vector<double>* CT_dates()
vector<simLenType>* DT_dates()
vector<cardinalType>* states()
void recordCTSample( double date, cardinalType state )
void recordDTSample( simLenType date, cardinalType state )
// I/O
void writeTrajectory( FILE* out, string format )

The methods dates() and states() give access to the trajectory, the total size of which is obtained with
trajectorySize(). The statistics that are collected are returned as a distribution object with distribution().

Initial distribution. The simulation must start from some initial state. This state is obtained by sampling
from the initial_distribution_ attribute of the Markov chain. This value can be set with the method
set_init_distribution(). If not set, the distribution DiracDistribution(0) is used.

Random number generation. There is currently no way to interact with the Random Number Generator
that is used in sampling distributions and performing Monte Carlo simulation.
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3.2.1.7 Exact sampling from the stationary distribution (backwards)

Exact Sampling consists in drawing directly samples from the stationary distribution of a Markov chain.
This applies to discrete-time Markov chains (and continuous-time ones after uniformization) and can be
done with the “backwards coupling” technique.

MarmoteCore supplies a method implementing this technique for general chains. It uses the implementa-
tion from the PSI-1 package, see http://psi.gforge.inria.fr/dokuwiki/.

Usage:

SimulationResult* StationaryDistributionSample (int nbSamples);

In that case, the attributes of the SimulationResult object that is returned, have a signification that
differs from the one in “Monte Carlo” methods.

The _states attribute (which is accessed through the states() method contains the list of samples that
were obtained. The _dates() attribute (accessed through dates()) contains the backward coupling time
that was necessary for each sample. The size of both these arrays is equal to the value of the parameter
nbSamples of the StationaryDistributionSample() method.

This method uses three external programs: psi_alias, psi_traj and psi_sample. These should be
accessible through the $PATH environment variable.

3.2.1.8 Computation of the stationary distribution

Several methods are provided for computing (usually: numerically approximating) the stationary distribution
of Markov chains. There are methods with few controls, supposedly easy to use:

Distribution* StationaryDistribution(bool progress)
Distribution* StationaryDistributionCT(bool progress)
Distribution* StationaryDistributionDT(bool progress)
Distribution* StationaryDistributionGthLD()
Distribution* StationaryDistributionSOR()
Distribution* StationaryDistributionR()

and one entry point with detailed controls for iterative methods:

Distribution* StationaryDistributionIterative(
string method,
int tmax,
double precision,
string initDistribType,
DiscreteDistribution* iDis,
bool progress ).

Linear Algebra methods. The methods StationaryDistributionGthLD() and StationaryDistributionR()
use algorithms for solving the linear system

πT = 0 (continuous time), or πT = π (discrete time)

together with the constraint that π is a probability vector. They are exact, up to numerical errors. They
use an amount of memory proportional to the size of a full matrix and may not be suited for large problems.

The method StationaryDistributionGthLD() performs a call to the corresponding application from
Xborne. This feature is not available in the current version.

The method StationaryDistributionR() uses the R environment. This feature is not available in the
current version.
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Standard Iterative methods. The remaining methods are iterative in the sense that they build a
sequence of vectors π0, π1, . . . , πn, . . . that ideally converges to the solution π. Usually, these methods
have several control parameters. These parameters are fixed to some default values in the convenient
methods StationaryDistribution(), StationaryDistributionCT(), StationaryDistributionDT() and
StationaryDistributionSOR(). The first one is actually a common entry point that selects one of the two
following ones depending on the type of the Markov chain.

For cases where a finer control is needed, the method StationaryDistributionIterative() is provided
with all parameters. It currently supports two algorithms (specified in the method variable): "Power" and
"Embed". The first algorithm is the standard Power method on probability transition matrices. It is applied
to the uniformized chain in the case of continuous-time. The second algorithm is specific of continuous-time.
It applies the power method to the discrete-time Markov chain embedded at jump times, then corrects the
distribution obtained so as to provide the stationary distribution.

Alternately, a direct call to the corresponding methods can be done with the interface:

Distribution* StationaryDistributionCTEmbedding(int tMax, double precision,
DiscreteDistribution *iDis, bool progress );

Distribution* StationaryDistributionPower(int tMax, double precision,
DiscreteDistribution *iDis, bool progress );

Other parameters common to these methods are:

progress : flag specifying if the iteration numbers must be issued along the way.

tmax : the maximum number of iterations to be performed. When this number is reached, a message is
issued warning the user that the computation may be imprecise. Note that iterative methods usually
do not provide a guarantee of precision anyway.

precision : a precision parameter used for stopping iterations. Typically, iterations stop when two consec-
utive results have a “distance” less than this parameter. Note that this does not imply in general that
the result produced is within a distance of the exact value.

initDistribType : a specification of the initial distribution to be used in the iterations. Recognized types
are: "Zero" for the Dirac distribution concentrated on the state with index 0; "Max" for the Dirac
distribution concentrated on the state with largest index; "Uniform" for the uniform distribution over
the whole state space, and "Custom" in which case the iDis parameter is used.

iDis : the initial distribution to be used in the iterations.

Red Light Green Light (RLGL) Iterative methods. The entry point to RLGL algorithms3 is the
method:

Distribution* StationaryDistributionRLGL(int tMax, double epsilon,
DiscreteDistribution *iDis, bool progress,
double alpha, string criterion)

Specific parameters to the StationaryDistributionRLGL are:

alpha : is a parameter in [0, 1], used for the PageRank variant: αP + (1− α)π0; it has the default value 1;

criterion : indicates how nodes whose cash should be routed are chosen: available options are

"thresh_1" : absolute cash greater than average (the default value),
"thresh_2" : cash greater than sqare root of second moment,
"RR" : round robin,
"PI" : all cash is routed, equivalent to power iteration.

3The algorithms are described in https://arxiv.org/abs/2008.02710.
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3.2.1.9 Transient distributions

The transient distribution is the distribution of the state of the Markov chain after a given time, starting
from some initial state. Methods performing this calculation are:

Distribution* TransientDistributionR( int fromState, double t )
Distribution* TransientDistributionDT( int fromState, int t )

The method TransientDistributionR performs the calculation for continuous-time chains. It uses the
R environment. This feature is not available in the current version. The method TransientDistributionDT
performs the calculation for discrete-time chains. It uses the power method.

3.2.1.10 Hitting times

Hitting times are random variables defined from the Markov chain. They measure the time it takes for
the chain to reach a certain set of states, starting from some initial state. Methods are available for di-
rectly computing their distribution, computing their average, or obtaining samples of them via Monte Carlo
simulation.

Computing the hitting time distribution. There are no top-level methods for this in the current
version. Derived classes implement such a method when it is known from the theory.

Computing the average hitting time. The methods computing the average of the hitting time distri-
butions are:

double* AverageHittingTime(bool *hitSetIndicator)
double* AverageHittingTimeDT(bool *hitSetIndicator)
double* AverageHittingTimeDTIterative(bool *hitSetIndicator)
double** AverageHittingTimeDT_Conditional(bool *hitSetIndicator)
double** AverageHittingTimeDT_ConditionalIterative(bool *hitSetIndicator)

The parameter common to these methods is:

hitSetIndicator : an array of boolean marking the states that are in the hitting set with true, the other
ones with false.

The method AverageHittingTime() is available for both discrete-time and continuous-time Markov
chains. It calls AverageHittingTimeDT() for discrete-time chains. For continuous-time chains, it performs
uniformization, then calls AverageHittingTimeDT() on the uniforized chain.

The method AverageHittingTimeDT() uses the Gauss-Jordan method to solve the linear system that
provides average hitting times. The method AverageHittingTimeIterative() solves (approximately) the
same system with the power method. Both return arrays of the size of the state space, contaning the average
hitting time of the hitting set, from every state in the state space.

Likewise, the method AverageHittingTimeDT_Conditional() computes the average hitting times condi-
tioned on the state hit. It uses uses the Gauss-Jordan method. The iterative version AverageHittingTimeDT_
ConditionalIterative() uses an approximate fixed point method to solve each of the linear systems in-
volved. Both return a two-dimensional square array of the size of the state space, where entry (i, j) represents
the conditional hitting time of state j starting from state i. If j is not in the hitting set, this number is 0.

These methods apply only to discrete-time chains. They should not be used with large state spaces.

Simulating hitting times. Methods for obtaining samples of the hitting times are:

SimulationResult* SimulateHittingTime(DiscreteDistribution *iDis, bool *hitSetIndicator,
unsigned long int nbSamples, double tMax)
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SimulationResult* SimulateHittingTime(cardinalType iState, bool *hitSetIndicator,
unsigned long int nbSamples, double tMax )

SimulationResult* SimulateHittingTimeCT(DiscreteDistribution *iDis, bool *hitSetIndicator,
unsigned long int nbSamples, double tMax )

SimulationResult* SimulateHittingTimeDT(DiscreteDistribution *iDis, bool *hitSetIndicator,
unsigned long int nbSamples, double tMax )

The method SimulateHittingTime() obtains sample of the distribution with Monte Carlo simulation.
It uses the parameters nbSamples to specify how many samples should be collected, and tMax to limit the
duration of simulations. For discrete-time chains, it is interpreted as maximal the number of steps to perform,
and for continuous-time chains, the maximal value of time. When this limit is reached, it is returned as
the sample. Two variants of the method accept as parameter: either some initial distribution iDis, or some
initial state iState.

Depending on the type of Markov chain, the specific methods SimulateHittingTimeCT() or Simulate
HittingTimeDT() are called. They accept only an initial distribution parameter iDis. If the hitting time
from a specific initial state is needed, then convert this state to a DiracDistribution() (see Section 3.5.2.2)
or use the generic SimulateHittingTime().

All simulation methods return a SimulationResult object. See its description in Section 3.2.1.6. The
samples are recovered as a vector<double> for continuous-time Markov chains, and a vector<simLenType>
for discrete-time Makov chains.

3.2.1.11 Output

Markov chain objects can be saved to a file using a number of formats. The methods for doing this are:

void Write(std::ostream* out, string modelName, inoutFormat format )
void Store(std::string modelName, inoutFormat format )

The method Write() places the output in the stream out. The method Store() places the output into a
file. The file name is obtained by concatenating the modelName with an extension depending on the output
format specified by parameter format. The formats currently supported are described in Section 3.1.

There is also a serialization method

std::string toString( inoutFormat format )

which converts the result of Write() into a string.

3.2.2 Implementations
The following Markov chain models implemented. When a model can be considered as a sub-case of another
model, the corresponding class inherits of that of the super-model. A hierarchy of some known models of the
literature is proposed in Appendix B, in continuous time (Appendix B.1) and discrete time (Appendix B.2).
Since not all the models are implemented yet, the inheritance relation between the classes described below
is restricted to implemented ones.

Currently implemented models:
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Name description inherits from
TwoStateDiscrete generic discrete-time chain with two states MarkovChain
TwoStateContinuous generic continuous-time chain with two states MarkovChain
Homogeneous1DRandomWalk discrete-time random walk on subsets of N MarkovChain
Homogeneous1DBirthDeath continuous-time birth-death on subsets of N MarkovChain
HomogeneousMultiDRandomWalk discrete-time random walk on subsets of Nd MarkovChain
HomogeneousMultiDBirthDeath continuous-time random walk on subsets of Nd MarkovChain
MMPP the Markov-modulated Poisson process on N MarkovChain
PoissonProcess the usual Poisson process on N Homogeneous1DBirthDeath
Felsenstein81 continuous-time model for genome evolution MarkovChain

3.2.2.1 TwoStateDiscrete

This class implements the two-state discrete-time Markov chain. This is a discrete-time Markov chain model,
characterized by:

• the probability of jumps from state 0 to state 0, a,

• the probability of jumps from state 1 to state 1, b.

It is a currently class derived from MarkovChain: it probably should be derived from Homogeneous1DRandomWalk.

Definition. This class is accessed with the directive

#include "marmoteMarkovChain/marmoteTwoStateDiscrete.h"

Constructors. This class has a single constructor:

TwoStateContinuous( double a, double b );

Re-implemented methods. The following methods have been re-implemented within TwoStateDiscrete:

std::vector<cardinalType> AbsorbingStates();
std::vector< std::vector<cardinalType> > RecurrentClasses();
std::vector< std::vector<cardinalType> > CommunicatingClasses();
stateType Period();
bool IsIrreducible();
bool IsAccessible(stateType stateFrom, stateType stateTo);
SimulationResult* SimulateChain(double tMax, bool stat, bool traj, bool incr, bool trace);

Specific methods. The following methods are specific to the class:

TwoStateDiscrete* Copy();
BernoulliDistribution* StationaryDistribution();
BernoulliDistribution* TransientDistribution( double t );
std::vector<Distribution*> HittingTimeDistribution( bool* hitSetIndicator );
double* AverageHittingTime( bool* hitSetIndicator );

The parameter of the second methods is t, the time (measured in the number of time steps) at which
the distributions should be evaluated.

The method TransientDistribution() computes the transient distribution π(t) with the exact formulas:

p0(t) =
1

a+ b− 2

(
b− 1 + (a+ b− 1)t((a− 1)p0(0) + (1− b)p1(0))

)
p1(t) =

1

a+ b− 2

(
a− 1− (a+ b− 1)t((a− 1)p0(0) + (1− b)p1(0))

)
.
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The method StationaryDistribution() returns the stationary distribution: it is a Bernoulli distribu-
tion given by:

π =

(
b− 1

a+ b− 2
,

a− 1

a+ b− 2

)
and is defined only when (a, b) ̸= (1, 1).

Hitting time distributions are either Dirac distributions at 0, or geometric distributions on N∗. The situ-
ation where the hitting set is empty is handled: the (defective) distribution GeometricDistribution(1.0)
is returned by HittingTimeDistribution(), and the constant INFINITE_DURATION is returned by Average
HittingTime() (see Section 3.5.1).

3.2.2.2 TwoStateContinuous

This class implements the two-state continuous-time Markov chain. This is a continuous-time Markov chain
model, characterized by:

• the rate of jumps from state 0 to state 1, α,

• the rate of jumps from state 1 to state 0, β.

It is currently a class derived from MarkovChain: it probably should be derived from Homogeneous1DBirthDeath.

Definition. This class is accessed with the directive

#include "marmoteMarkovChain/marmoteTwoStateContinuous.h"

Constructors. This class has a single constructor:

TwoStateContinuous( double alpha, double beta );

Re-implemented methods. The following methods have been re-implemented within TwoStateContinuous:

std::vector<cardinalType> AbsorbingStates();
std::vector< std::vector<cardinalType> > RecurrentClasses();
std::vector< std::vector<cardinalType> > CommunicatingClasses();
stateType Period();
bool IsIrreducible();
bool IsAccessible(stateType stateFrom, stateType stateTo);
SimulationResult* SimulateChain(double tMax, bool stat, bool traj, bool incr, bool trace);

Specific methods. The following methods are specific to the class:

TwoStateDiscrete* Copy();
TwoStateDiscrete* Uniformize();
TwoStateDiscrete* Embed();
BernoulliDistribution* StationaryDistribution();
BernoulliDistribution* TransientDistribution( double t );
std::vector<Distribution*> HittingTimeDistribution( bool* hitSetIndicator );
double* AverageHittingTime( bool* hitSetIndicator );

The parameter of the second methods is t, the time at which the distributions should be evaluated.
The method TransientDistribution() computes the transient distribution π(t) with the exact formulas:

p0(t) =
1

α+ β

(
β + e−(α+β)t(αp0(0)− βp1(0))

)
p1(t) =

1

α+ β

(
α− e−(α+β)t(αp0(0)− βp1(0))

)
.
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The method StationaryDistribution() returns the stationary distribution: it is a Bernoulli distribu-
tion given by:

π =

(
β

α+ β
,

α

α+ β

)
and is defined only when (α, β) ̸= (0, 0).

Hitting time distributions are either Dirac distributions at 0, or exponential distributions. The situation
where the hitting set is empty is handled: the (defective) distribution ExponentialDistribution(INFINITE
_DURATION) is returned by HittingTimeDistribution(), and the constant INFINITE_DURATION is returned
by Average HittingTime() (see Section 3.5.1).

3.2.2.3 Homogeneous1DBirthDeath

This class implements the 1-dimensional birth and death process with homogeneous transition rates. This
is a continuous-time Markov chain model, characterized by:

• the number of states (or “size”) N , possibly INFINITE_STATE_SPACE_SIZE

• the rate of jumps to the right, λ,

• the rate of jumps to the left, µ.

Definition. This class is accessed with the directive

#include "marmoteMarkovChain/marmoteHomogeneous1dBirthDeath.h"

Constructors. Two constructors are available.

Homogeneous1DBirthDeath( double lambda, double mu );
Homogeneous1DBirthDeath( int n, double lambda, double mu );

The first form defines a birth-death process with N as state space. The second one defines a birth-death
process with [0..n− 1] as state space.

Re-implemented methods. The following methods have been re-implemented within Homogeneous1DBirthDeath:

SimulationResult* SimulateChain(double tMax, bool stat, bool traj, bool incr, bool trace);

Simulation is possible for infinite-state birth-death processes. However, overflow of the state is not handled
currently.

Specific methods. The following methods are specific to the class:

Homogeneous1DBirthDeath* Copy();
DiscreteDistribution* TransientDistribution(double t,int nMax);
DiscreteDistribution* ApproxTransientDistribution(double t,int nMax);
GeometricDistribution* StationaryDistribution();
DiscreteDistribution* StationaryDistribution(int nMax);
void MakeMarkovChain();

The parameters of these methods are: t, the time at which distributions should be evaluated, and nMax,
the index of the largest state. Note that the “size” parameter specified at the creation of the object is ignored
by these methods.

The method TransientDistribution() computes the transient distribution π(t) with exact formulas
(currently incomplete).
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The method ApproxTransientDistribution() computes an approximation to the transient distribution
for a Homogeneous1DBirthDeath chain, computed as an interpolation between the initial distribution π(0)
and the stationary distribution π:

π(t) = (1− e−(λ+µ)t)π + e−(λ+µ)tπ0.

The method StationaryDistribution() returns the stationary distribution for the birth-death process
on N. It is a geometric distribution. When λ ≥ µ, the geometric distribution with parameter 1 is returned,
to represent the defective distribution with a “Dirac mass at +∞”.

The method StationaryDistribution(int n) returns the stationary distribution for the birth-death
process on [0..n] (and not [0..n− 1]). It is a truncated geometric distribution:

πk =
(1− λ/µ)(λ/µ)k

1− (λ/µ)n+1
, if λ ̸= µ, πk =

1

n+ 1
if λ = µ, k = 0..n.

When λ = µ, this is a discrete uniform distribution, but the class UniformDiscreteDistribution is not
used.

The method MakeMarkovChain() creates a generator for the Markov chain object, of the type SparseMatrix.
This does not apply to chains on N.

3.2.2.4 Homogeneous1DRandomWalk

This class implements the 1-dimensional random walk with homogeneous transition probabilities. This is a
discrete-time Markov chain model, characterized by:

• the number of states (or “size”) N , possibly INFINITE_STATE_SPACE_SIZE

• the probability to jump to the right, p

• the probability to jump to the left, q.

The model is valid if p+ q ≤ 1. The probability to stay at the same position is 1− p− q.

Definition. This class is accessed with the directive

#include "marmoteMarkovChain/marmoteHomogeneous1dRandomWalk.h"

Constructors. Two constructors are available.

Homogeneous1DRandomWalk( double p, double q );
Homogeneous1DRandomWalk( int n, double p, double q );

The first form defines a random walk process with N as state space. The second one defines a random walk
process with [0..n− 1] as state space.

Re-implemented methods. The following methods have been re-implemented within Homogeneous1DBirthDeath:

SimulationResult* SimulateChain(double tMax, bool stat, bool traj, bool incr, bool trace);
void Write( std::ostream* out, string modelName, inoutFormat format );
void Store( string modelName, inoutFormat format );
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Specific methods. The following methods are specific to the class:

Homogeneous1DRandomWalk* Copy();
SimulationResult* SimulateChain(long int tMax, bool stat, bool traj, bool trace);
DiscreteDistribution* ApproxTransientDistribution(int t, int nMax);
Distribution* StationaryDistribution();
void MakeMarkovChain();
void Write(string format, string prefix);

The method SimulateChain performs Monte Carlo simulation of the chain. Simulation is possible for
infinite-state birth-death processes. However, overflow of the state is not handled currently.4

The parameters of the methods devoted to transient and stationary distributions are: t, the time at
which distributions should be evaluated, and nMax, the index of the largest state.

The method ApproxTransientDistribution() computes an approximation to the transient distribution
for a Homogeneous1DRandomWalk chain, computed as an interpolation between the initial distribution π(0)
and the stationary distribution π:

π(t) = (1− ωt)π + ωtπ0, with ω = 1− p− q + 2
√
pq cos(π/n).

Note that method uses its own parameter n and ignores the “size” parameter specified at the creation of the
object.

The method StationaryDistribution() returns the stationary distribution for the birth-death process.
When the process is on N, this stationary distribution is a geometric distribution. When p ≥ q, the geometric
distribution with parameter 1 is returned, to represent the defective distribution with a “Dirac mass at +∞”.

The method MakeMarkovChain() creates a generator for the Markov chain object, of the type SparseMatrix.
This does not apply to chains on N.

Methods Write() and Store() (see Section 3.2.1.11) produce a representation of the model. Supported
formats for objects Homogeneous1DRandomWalk are:

• FORMAT_MARMOTE: the standard sparse Marmote format;

• Xborne format FORMAT_XBORNE_SIZE for state space representations, FORMAT_XBORNE_RII and FORMAT_XBORNE_CUU
for row-based and column-based outputs;

• matrix formats FORMAT_MARCA and FORMAT_MATRIXMARKET_SPARSE;

• Psi3 yaml configuration file FORMAT_PSI3;

• R full-matrix format FORMAT_R.

3.2.2.5 HomogeneousMultiDRandomWalk

This class implements the multidimensional random walk with homogeneous transition probabilities. This
is a discrete-time Markov chain model, characterized by:

• the number of dimensions d,

• the number of states in each dimension, possibly INFINITE_STATE_SPACE_SIZE

• the probabilities to jump to the right in each dimension, (p1, . . . , pd),

• the probability to jump to the left in each dimension, (q1, . . . , qd).

The model is valid if
∑d

k=1(pi+qi) ≤ 1. The probability to stay at the same position is r = 1−
∑d

k=1(pi+qi).
Objects of this class are equipped with a generator object, from the HomogeneousMultidTransition

class (see Section 3.3.2.2).
4Observe that the method does not override MarkovChain::SimulateChain because its signature is actually that of

MarkovChain::SimulateChainDT. This mismatch will be corrected in a lated version.
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Definition. This class is accessed with the directive

#include "marmoteMarkovChain/marmoteHomogeneousMultidRandomWalk.h"

Constructors. Two constructors are available.

HomogeneousMultiDRandomWalk( unsigned int nbDims, double* p, double* q );
HomogeneousMultiDRandomWalk( unsigned int nbDims, stateType* sz, double* p, double* q );

In both, nbDims is the number of dimensions d and p, q are arrays of size d containing the probabilities pi
and qi. The first form defines a random walk with Nd as state space. The second one defines a random walk
with ×d

i=1[0..ni − 1] as state space, where the ni are the values in the array sz.

Re-implemented methods. The following methods are reimplemented.

DiscreteDistribution* StationaryDistribution();
int* SimulateHittingTime(cardinalType iState, bool *hitSetIndicator,

unsigned long int nbSamples, simLenType tMax);
Store(string modelName, inoutFormat format);

The SimulateHittingTime method works only for finite chains, although this condition is not currently
enforced.

Specific methods. The following methods are specific to the class:

void MakeMarkovChain();
DiscreteDistribution* StationaryDistribution();

The method MakeMarkovChain() creates a generator for the Markov chain object, of the type SparseMatrix.
It applies only to finite chains of dimension 1 or 2.

The method StationaryDistribution() returns the stationary distribution for the birth-death pro-
cess. It applies only to chains on finite state spaces. The distribution is a product of truncated geometric
distributions, see Homogeneous1DRandomWalk.

The method Store() (see Section 3.2.1.11) handles specifically the format FORMAT_XBORNE_RII. Other
formats are directly handled by the main class MarkovChain.

3.2.2.6 HomogeneousMultiDBirthDeath

This class implements the multidimensional birth-death process with homogeneous transition rates. This is
a continuous-time Markov chain model, characterized by:

• the number of dimensions d,

• the number of states in each dimension, possibly INFINITE_STATE_SPACE_SIZE

• the rates of jumps to the right in each dimension, (λ1, . . . , λd),

• the rates of jumps to the left in each dimension, (µ1, . . . , µd).

Objects of this class are equipped with a generator object, from the HomogeneousMultidTransition
class (see Section 3.3.2.2).

Definition. This class is accessed with the directive

#include "marmoteMarkovChain/marmoteHomogeneousMultidBirthDeath.h"

25



Constructors. Two constructors are available.

HomogeneousMultiDBirthDeath(unsigned int nbDims, double* lambda, double* mu);
HomogeneousMultiDBirthDeath(unsigned int nbDims, stateType* sz, double* lambda, double* mu);

In both, nbDims is the number of dimensions d and lambda, mu are arrays of size d containing the rates
λi and µi. The first form defines a birth-death process with Nd as state space. The second one defines a
birth-death process with ×d

i=1[0..ni − 1] as state space, where the ni are the values in the array sz.

Re-implemented methods. The following methods are reimplemented.

DiscreteDistribution* StationaryDistribution();
int* SimulateHittingTime(cardinalType iState, bool *hitSetIndicator,

unsigned long int nbSamples, simLenType tMax);
Store(string modelName, inoutFormat format);

The SimulateHittingTime method works only for finite chains, although this condition is not currently
enforced.

Specific methods. The following methods are specific to the class:

void MakeMarkovChain();
DiscreteDistribution* StationaryDistribution();

The method MakeMarkovChain() creates a generator for the Markov chain object, of the type SparseMatrix.
It applies only to finite chains of dimension 1 or 2.

The method StationaryDistribution() returns the stationary distribution for the birth-death pro-
cess. It applies only to chains on finite state spaces. The distribution is a product of truncated geometric
distributions, see Homogeneous1DRandomWalk.

The method Store() (see Section 3.2.1.11) handles specifically the format FORMAT_XBORNE_RII. Other
formats are directly handled by the main class MarkovChain.

3.2.2.7 MMPP

This class implements the generic Markov-modulated Poisson process. This is a continuous-time Markov
chain model, characterized by:

• a continuous-time Markov chain, called the “environment”, with generator Q;

• a vector of arrival rates r.

It is a “pure birth” process which behaves as follows. When the environment is in state i, arrivals occur
according to a Poisson process of rate ri. State transitions of the environment occur independently of the
arrival processes.

Definition. This class is accessed with the directive

#include "marmoteMarkovChain/marmotePoissonProcess.h"

Constructors. This class has a single constructor:

MMPP( TransitionStructure* env, double* rates );

The parameter env is the generator of the environment, the parameter rates contains the rates ri.

Re-implemented methods. None.
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Specific methods. The following methods are specific to MMPP:

SimulationResult* SimulateChain(double tMax,
DiscreteDistribution* numberDis, DiscreteDistribution* phaseDis,
bool traj, bool trace=false, bool withIncrements=false );

MMPP* Copy();

The parameters and behavior of SimulateChain() are similar to MarkovChain::SimulateChain() (see
Section 3.2.1.6) but it admits two parameters for specifying the initial conditions. Parameter numberDis is
for the initial value of the state of the arrival process: a random number in N. Parameter phaseDis is the
distribution of the state (also known as “phase”) of the environment at time t = 0.

3.2.2.8 PoissonProcess

This class implements the Poisson counting process. This is a continuous-time Markov chain model, char-
acterized by a unique parameter λ: its rate or intensity. It is a “pure birth” process, and is derived from
Homogeneous1DBirthDeath: the parameter µ of this model is set to 0.

Definition. This class is accessed with the directive

#include "marmoteMarkovChain/marmotePoissonProcess.h"

Constructors. This class has a single constructor:

PoissonProcess( double lambda );

Re-implemented methods. The following methods have been re-implemented within PoissonProcess:

Distribution* TransientDistribution(double t);
GeometricDistribution* StationaryDistribution();
SimulationResult* SimulateChain(double tMax, bool stat, bool traj, bool incr, bool trace);

The method TransientDistribution() returns a Poisson distribution. There is no stationary distribu-
tions for Poisson processes: the method StationaryDistribution() returns a GeometricDistribution(1.0)
object, that is, a Dirac mass at infinity. See Section 3.5.2.6.

Specific methods. None.

3.2.2.9 Felsenstein81

The Felsenstein 81 model is a continuous-time Markov chain with a state space of size 4 an generator defined
by:

qi,j = µpi , i ̸= j qi,i = µ(1− pi) ,

where π = (p1, p2, p3, p4) is a probability distribution, and µ > 0. The distribution π turns out to be the
stationary distribution.

Definition. This class is accessed with the directive

#include "marmoteMarkovChain/biology/felsenstein81.h"
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Constructors. Two constructors are available:

Felsenstein81( double p[4] , double mu);
Felsenstein81( DiscreteDistribution* d, double mu);

In both versions, the parameter µ is passed as variable mu. The distribution π is passed as an array of four
elements in the first version, and as a DiscreteDistribution object in the second. It must have 4 values,
although this condition is not currently enforced.

Re-implemented methods. The following method has been re-implemented within Felsenstein81:

Distribution* HittingTimeDistribution(int iState, bool* hittingSet);
double* AverageHittingTime(bool* hittingSet);
SimulationResult* SimulateChain(double tMax,

bool stats, bool traj, bool incr, bool trace );

The method HittingTimeDistribution() uses the exact formula:

P (τH ≤ t) = 1− e−µtπ(H),

where π(H) is the mass of the hitting set H with the measure π, and returns an ExponentialDistribution
object. The method AverageHittingTime uses the same formula.

Specific methods. The following methods are specific to the class.

void MakeMarkovChain();
DiscreteDistribution* TransientDistribution(int fromState, double t);
DiscreteDistribution* TransientDistribution(double t);
DiscreteDistribution* StationaryDistribution();

The method MakeMarkovChain() creates a generator for the Markov chain object, of the type SparseMatrix
(although this matrix is full in general).

The methods TransientDistribution() compute the transient distribution π(t) with exact formulas.
The first form assumes that the chain starts in the state specified as argument fromState. The second one
assumes that the chain starts with its initial distribution as specified by attribute init_distribution_.

The method StationaryDistribution() returns the exact stationary distribution π.

3.3 The TransitionStructure object
Transition structures are abstractions for matrices, or weighted graphs. Transition structures commonly
encountered in Markov modeling are probability transition matrices, for discrete-time Markov chains, and in-
finitesimal generators (or rate matrices) for continuous-time Markov chains. Matrices or transition functions
can occur in various contexts. MarmoteCore provides a unified presentation with the TransitionStructure
object and several implementations.

A transition structure maps an “origin” space to a “destination” space and associates a value to these
“transitions”. In the description below, this will be represented by an “operator” T , mapping some set O to
some set D. The values will be denoted as Ti,j for i ∈ O and j ∈ D. The origins i are associated with rows
and the destinations j with columns.

By convention, when the value associated to some possible transition is Ti,j = 0, then the transition does
not actually exist. Accordingly, it is possible to speak of the number of transitions from some particular
origin i, since it does not necessarily coincide with the cardinal of the set D. In the vocabulary of (directed)
graphs, this is known as the outdegree of node i.
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3.3.1 Common features
The methods common to TransitionStructure and derived classes are summarized in the following tables,
grouped by functionalities.

3.3.1.1 Definition

This class is accessed with the directive

#include "marmoteCore/marmoteTransitionStructure.h"

3.3.1.2 Attributes and accessors

All TransitionStructure objects have the following attributes:

timeType type_ the time type of the structure: discrete or continuous
long int orig_size_ size of the origin state space
long int dest_size_ size of the destination state space

The type_ attribute has an influence on the type of entries. It has two possible values: DISCRETE and
CONTINUOUS. When it is DISCRETE, entries must be probabilities, that is, comprised between 0 and 1. When
it is CONTINUOUS, entries are arbitrary real numbers.

The “size” attributes are, a priori, nonnegative integer numbers. It is however possible to define transition
structures over sets which are not finite but denumerable. In that case, the value of the size attribute is
INFINITE_STATE_SPACE_SIZE.

These attributes are accessed with the following methods:

// accessing the attributes
timeType getType() returns CONTINUOUS or DISCRETE
int origSize() returns orig_size_
int destSize() returns dest_size_

Other Methods common to all TransitionStructure objects are:

// accessing the entries
bool setEntry(int,int) set the value of entry Ti,j

bool addToEntry(int,int,double) add a value to entry Ti,j

double getEntry(int,int) obtain the entry Ti,j

int getNbElts(int) obtain the number of non-zero entries
(outdegree) for some origin i

int getCol(int,int) obtain the destination of the k transition
from some origin i

double getEntryByCol(int,int) obtain the k-th non-zero entry
in some row i

DiscreteDistribution* TransDistrib(int) see Section 3.3.1.3
bool ReadEntry(FILE*);
double RowSum(int) evaluation of the sum

∑
j Ti,j for some i

// transformations
TransitionStructure* Uniformize() see Section 3.3.1.5
TransitionStructure* Embed() see Section 3.3.1.5
// actions of a transition
void EvaluateMeasure(double*,double*) evaluate the action on a mesure: πT
void EvaluateMeasure(DiscreteDistribution*, evaluate the action on a mesure: πT

DiscreteDistribution*) version with Distribution objects
void EvaluateValue(double*,double*) evaluate the action on a value: Tv
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Note that the addToEntry() method modifies an entry by adding some value val to it, or creates an entry
if none was found. The methods setEntry() and addToEntry() return a boolean, true if the operation
was successful, false otherwise, typically when parameters i,j are out of range.

3.3.1.3 Probabilistic Transitions

In the context of Markov chains, transitions are of random nature. The entries in a row of a transition
structure encode the random law of transitions from the corresponding origin state i to the destination space
D. The TransDistrib() method extracts this law as a discrete distribution on D.

Unless the convention is explicitly different in the implementation of a derived class, the distribution is
obtained as follows:

• When the time type is discrete, the values Ti,j are directly intepreted as transition probabilities.

• When the time type is continuous, the probabilities returned are values Ti,j are

pi,j =
Ti,j∑

k∈D Ti,k
.

3.3.1.4 Actions as an operator

Transition structures can “operate” on measures and values. In linear algebra terminology, these operations
correspond to left- and right- vector/matrix multiplications.

Measures are defined on the destination space. The action of operator T on measure π, denoted as πT ,
results in another measure with weights:

(πT )j =
∑
i∈D

πiTi,j , for all j ∈ D.

Values are defined on the origin space. The action of operator T on value v, denoted as Tv, results in
another value:

(Tv)i =
∑
j∈D

Ti,jvj , for all j ∈ D.

These operations are realized by methods evaluateMeasure() (two forms, depending on the represen-
tation of the measure) and evaluateValue().

3.3.1.5 Uniformization and Embedding

The uniformize() and embed() methods transform a continuous-time structure into a discrete-time one.
As such, they do not operate on discrete-time transition structures: they just return a copy of the original
object in that case.

Uniformization consists in considering the evolution of a continuous-time Markov chain at the pace of
a Poisson process with a constant rate ν, called the uniformization factor. All events of the Markov chain
occurs at instants of this Poisson process. However, some events may be self-transitions that do not change
the state. The result is a discrete-time structure. Algebraically,

T ν = I +
1

ν
T.

The operation is possible for a range of values of ν. By default, the value chosen is the minimum possible:
ν = maxi |Tii|.

Embedding consists in returning the discrete-time chain with transition probabilities obtained with the
TransDistrib() method (see Section 3.3.1.3).
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3.3.1.6 I/O

The Write() method outputs the structure on some file decriptor, using a given format (see Appendix C).
Supported formats are: XBORNE (Rii variant: by increasing row and increasing columns), MARCA, Matrix-
Market sparse and full, Ers, Maple, R, SCILAB, Full, and Matlab.

3.3.2 Implementations
Transition structures implemented:

• TransitionStructure/SparseMatrix

• TransitionStructure/HomogeneousMultidTransition (generalized birth-death)

Projected:

• TransitionStructure/EventMixture

• TransitionStructure/Matrix

• TransitionStructure/QBD

3.3.2.1 SparseMatrix

The class SparseMatrix implement sparse matrix storage, by rows.

Definition. This class is accessed with the directive

#include "marmoteCore/marmoteSparseMatrix.h"

Constructors. Two constructors are available:

SparseMatrix(int size);
SparseMatrix(int rowSize, int colSize);

In the first one, the size parameter applies to the origin and the destination space (square transition
structures). In the second one, they are speficied separately.

Re-implemented methods. The following methods have been re-implemented in SparseMatrix:

bool setEntry(int row, int col, double val);
bool addToEntry(int row, int col, double val);
double getEntry(int,int);
int getNbElts(int row);
int getCol(int row, int numCol );
double getEntryByCol(int row, int numCol);
double RowSum(int row);
void EvaluateMeasure(double* m, double* res);
DiscreteDistribution* EvaluateMeasure(DiscreteDistribution* d);
void EvaluateValue(double* v, double* res);
SparseMatrix* Copy();
SparseMatrix* Uniformize();
SparseMatrix* Embed();
void Write(FILE* out, std::string format);

The Write() method outputs the structure on some file decriptor, using a given format (see Appendix C).
Supported formats are "Ers", "Full", "MatrixMarket-sparse", "MatrixMarket-full", "Maple", "MARCA", "R",
"scilab" and "XBORNE".
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Specific methods. Additional methods with respect to the top class are:

double EvaluateValueState(double* v, int stateIndex);
void Normalize();
SparseMatrix* Revert();
void Diagnose(FILE* out);
SparseMatrix* getReverted();
std::pair<std::vector<SCC>*, SparseMatrix*> getStronglyConnectedComponents(double ignore);

The method EvaluateValueState() has the same function as EvaluateValue() but returns the value
for a single state passed as parameter stateIndex.

The Normalize() method reorganizes the internal storage of transitions so that: a) no duplicate columns
appear in rows; b) column numbers appear in increasing order. The resulting structure makes some algo-
rithms more efficient.

The Diagnose() method produces diagnostics and counts on the structure.
The Revert() method computes the transposed transition structure, in which origin and destination

states are exchanged, and the directions of transitions are reverted while keeping their weight or label. The
result is stored internally. The getReverted() method returns this transposed matrix; it computes it before
if not already present.

The getStronglyConnectedComponents() method computes a decomposition into strongly connected
components of the graph of the matrix. The result is returned as a pair (C⃗,M). Here, C⃗ is the list of
strongly connected components, each being coded in a structure with description:

struct SCC {
int id; /**< index of the SCC */
int period; /**< period of this SCC */
std::set<int> states; /**< list of states indices in the SCC */

};

The second part of the result, M , is the transition matrix between these strongly connected components.
The parameter ignore is a threshold: entries with values less or equal to it are ignored in the computation.
The default value is 0. The method applies to square transition structures, although this is not currently
enforced.

3.3.2.2 HomogeneousMultidTransition

The classe HomogeneousMultidTransition represents multidimensional, homogeneous random walk transi-
tion structures.

• the number of dimensions d,

• the number of states in each dimension, assumed finite,

• the probabilities to jump to the right in each dimension, (p1, . . . , pd),

• the probability to jump to the left in each dimension, (q1, . . . , qd).

The model is valid if
∑d

k=1(pi+qi) ≤ 1. The probability to stay at the same position is r = 1−
∑d

k=1(pi+qi).
The boundaries are absorbing: when a transition goes out of bounds, it is assumed to stay on the boundary.

Definition. This class is accessed with the directive

#include "marmoteCore/marmoteHomogenousMultidTransition.h"
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Constructors. The class has a single constructor:

HomogeneousMultidTransition(timeType type, unsigned int nbDims, stateType* dim_size,
double* left_trans, double* right_trans);

The parameter type specifies whether the transition structure is in continuous or discrete time. The pa-
rameter nbDims is the number of dimensions d and the parameter dimSize specifies the extension in each
dimension. The process has ×d

i=1[0..ni − 1] as state space, where the ni are the values in the array dimSize.
The arrays left_trans and right_trans will be interpreted as jumping probabilities or rates, depending
on the time type. See Section 3.2.2.5 or Section 3.2.2.6 for intepretations.

Re-implemented methods.

bool setEntry(int i, int j, double val);
double getEntry(int i, int j);
int getNbElts(int i);
int getCol(int i, int k);
double getEntryByCol(int i, int k);
DiscreteDistribution* TransDistrib(int i);
double RowSum(int i);
HomogeneousMultidTransition* Copy();
HomogeneousMultidTransition* Uniformize();
HomogeneousMultidTransition* Embed();
void EvaluateMeasure(double* d,double* res);
void EvaluateValue(double* v, double* res);
void Write(FILE* out, string format);
DiscreteDistribution* EvaluateMeasure(DiscreteDistribution* d);

The Write() method supports formats XBORNE, MARCA, Ers, Maple.

Specific methods.

int dim_size(int d);
double p(int d);
double q(int d);
DiscreteDistribution* JumpDistribution();

The three first ones are accessors to the number of dimensions d and the probability vectors p and q,
corresponding to the constuctor of the class.

The method JumpDistribution returns a discrete distribution representing the generic jumps. The
distribution has 2d+1 values: {0,±1, ...,±d}. Assuming a numbering of dimensions from 1 to d, the coding
is:

• 0 codes the self jump

• +i codes a jump upwards in dimension i

• −i codes a jump downwards in dimension i.

3.4 The MarmoteSet object
In MarmoteCore, sets are represented by unions of discrete (hyper-)rectangles. The simplest set is an integer
interval. Other sets are constructed from cartesian products of such intervals, and unions of them.
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3.4.1 Common features
Methods common to all MarmoteSet objects are summarized in the following tables.

States are represented by arrays of integers. A special type is used for states:

MarmoteState : the type representing a state, that is, a member of some MarmoteSet object. It is currently
implemented as an array of cardinalType but it is discouraged to rely on this assumption.

3.4.1.1 Definition

This class is accessed with the directive

#include "marmoteCore/marmoteSet.h"

3.4.1.2 Attributes and accessors

All MarmoteSet objects have the following common attributes:

enum opType UNION, PRODUCT, SIMPLE specify the type of construction
int nb_dimensions_ number of dimensions for products
int nb_zones_ number of subsets for unions
stateType cardinal_ total cardinal
MarmoteSet** zone_ array of subsets for unions
MarmoteSet** dimension_ array of dimensions for products
MarmoteState state_buffer_

// accessors
long int Cardinal() number of elements in the set
bool IsFinite()
bool IsSimple()
bool IsUnion()
bool IsProduct()
int tot_nb_dims() number of dimensions for products

3.4.1.3 Constructors
// constructors

MarmoteSet()
MarmoteSet( MarmoteSet **list, unsigned int nb, opType t )

The simple MarmoteSet() initializes a set with the minimal features corresponding to an empty set. The
user is responsible for setting up the attributes of the set. This is normally used only in derived classes.

The constuctor MarmoteSet( MarmoteSet **list, int nb, opType t ) builds a set from more ele-
mentary ones, using the construction of type t given as argument. The type may be one of UNION or
PRODUCT. The number of subsets is nb and they are provided in the array list.

3.4.1.4 State representation and indexing

// state-index conversions
void DecodeState(int index, MarmoteState);
int Index(MarmoteState)
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For computational purposes, all states are represented by a vector (array) of integers. The number
of elements in this array is the “total dimension” of the set, stored in the attribute tot_nb_dims_ and
can be retrieved with the accessor tot_nb_dims(). However, most objects like transition structures and
distributions require that the elements of the set be represented as consecutive integers. Any MarmoteSet
class must then implement a one-to-one correspondence between its states and some numbers called the
indices of the states.5

The two methods performing this conversion are Index() to pass from a state to an index, and DecodeState()
to do the reverse. These methods are used very often and should be as efficient as possible.

3.4.1.5 Walking through sets

Walking through sets is performed using the following methods.

// state space exploration
void FirstState(MarmoteState)
void NextState(MarmoteState)
bool IsFirst(MarmoteState)

An elementary operation on sets is to consider all states sequentially. For this purpose, every MarmoteSet
object identifies a particular state called the “first” or “initial” state, and stored in the attribute first_state_.
This is usually the state with index 0 but need not be so.

In addition, MarmoteSet provides three functions:

initialization with FirstState(stateBuffer), which sets the state (represented in the array stateBuffer
to the first state of the state space;

increment of the state with NextState(stateBuffer), which moves the state to the next one in the
enumeration order;

termination test with IsFirst(stateBuffer) which tests whether the enumeration came back to the
initial state.

3.4.1.6 I/O

I/O methods related to states and set are the following:

// I/O utilities
void enumerate()
void PrintState(FILE* out, int index);

The Enumerate() utility walks through the state space using the three constructs decribed above, printing
each state in the process.

The method PrintState() writes a representation of the state to the stream passed as parameter.
There are currently no provision for reading or writing state spaces as a whole.

3.4.2 Implementations
Six sets or classes of sets are currently implemented:

5When no confusion can occur, states and their indices are assimilated in this manual.
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Name description inherits from
EmptySet the empty set MarmoteSet
MarmoteInterval a simple 1-dimensional discrete interval, possibly infinite MarmoteSet
Integers the set of all integers MarmoteInterval
MarmoteBox cartesian products of intervals MarmoteSet
BinarySequence sequences of bits MarmoteSet
BinarySimplex sequences of bits with given count of ones MarmoteSet
Simplex sequences of integers with given total sum MarmoteSet

3.4.2.1 EmptySet

This class implements the empty set. It is intended primarily as an exercise, but can also be used as a default
value or a place-holder in some cases.

Definition. This class is accessed with the directive

#include "marmoteCore/marmoteEmptySet.h"

Constructors. The class has a single constructor:

EmptySet();

Re-implemented methods.

bool IsFinite();
bool Belongs(MarmoteState);
bool IsFirst(MarmoteState);
void FirstState(MarmoteState);
void NextState(MarmoteState);
void DecodeState(int index, MarmoteState);
int Index(MarmoteState);
void PrintState(FILE* out, MarmoteState);
void enumerate();

Method IsFinite() returns true. Method Belongs() returns false, since there are no states in the
set. Likewise for IsFirst(). The other methods issue error messages and do nothing. Method Index()
returns 0 by convention.

Specific methods. The class does not provide specific methods, except for Copy().

3.4.2.2 MarmoteInterval

This class implements sets of the form {a, a + 1, . . . , b} where a and b are integers. The cardinal of the set
is b− a+ 1, provided that a ≤ b. Sets of this class are always finite.

Definition. This class is accessed with the directive

#include "marmoteCore/marmoteInterval.h"

Constructors. The class has a single constructor:

MarmoteInterval( int min, int max );

By convention, if max < min, then the interval is empty. Otherwise, both min and max are inside the interval.
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Re-implemented methods.

bool IsFinite();
bool IsFirst(MarmoteState);
void FirstState(MarmoteState);
void NextState(MarmoteState);
void DecodeState(int index, MarmoteState);
int Index(MarmoteState);
void PrintState(FILE* out, MarmoteState);
void enumerate();

The first state is set as a. The index of state s is s− a.
The PrintState() method writes the state value with a leading white space and a minimal formating

width equal to 4 characters.

Specific methods. The class does not provide specific methods. In particular, the values of a and b cannot
be directly accessed after the creation of the object.

3.4.2.3 MarmoteIntegers

This class implements the set of all natural integers N = {0, 1, 2, . . .}. It is a particular case of MarmoteInterval,
from which it inherits.

Definition. This class is accessed with the directive

#include "marmoteCore/marmoteIntegers.h"

Constructors. The class has a single constructor:

MarmoteIntegers();

Re-implemented methods. The following methods are reimplemented from MarmoteInterval:

bool IsFinite();
bool Belongs(MarmoteState);

Method IsFinite() returns false.

Specific methods. The class does not provide specific methods, except for Copy().

3.4.2.4 MarmoteBox

The MarmoteBox class represents “rectangular” sets. They are cartesian products of one-dimensional inter-
vals: ×d

i=1[ab..bi]. They are not implemented using the MarmoteInterval objects however. These sets may
be infinite.

Definition. This class is accessed with the directive

#include "marmoteCore/marmoteBox.h"

37



Constructors. The class provides two constructors:

MarmoteBox(int nbDims, int* dimSize);
MarmoteBox(int nbDims, int *lower, int* upper);

In both, the parameter nbDims specifies the dimension d. It must be larger than 1 although this condition
is not currently enforced.

In the first variant, the array dimSize, which must have d elements, contains the sizes of the different
dimensions. These numbers may be INFINITE_STATE_SPACE_SIZE, in which case the corresponding dimen-
sion will be considered as N, or a finite value n, in which case the dimension will be considered as the interval
{0, . . . , n− 1}.

In the second variant, the values ai and bi are provided in the arrays lower and upper. These must be
nonnegative values, or INFINITE_STATE_SPACE_SIZE. By convention, if ai > bi, the interval of the corre-
sponding dimension is assumed to be {ai}.

Re-implemented methods.

bool IsFinite();
bool IsFirst(MarmoteState);
void FirstState(MarmoteState);
void NextState(MarmoteState);
void DecodeState(int index, int* buf);
int Index(int* buf);
void PrintState(FILE* out, MarmoteState);

The first state is set as (a1, . . . , ad). States are ordered lexicographically so that the index of state
(s1, . . . , sd) is given by the formula:

index(s1, . . . , sd) =

d∑
i=1

si

d∏
j=i+1

(bj − aj + 1) .

The PrintState() method writes the state value as a sequence of numbers between parentheses and
separated by commas, each number having a leading white space and a minimal formating width equal to 3
characters. Example: ( 3, 150, 20).

Specific methods. The class does not provide specific methods. In particular, the values of used for
creating the object cannot be directly accessed after the creation.

3.4.2.5 BinarySequence

The BinarySequence class represents sequences (or words) of bits. They can be seen as cartesian powers
of the set {0, 1} and therefore as rectangular sets. They are not implemented using the MarmoteBox objects
however. These sets are always finite.

Definition. This class is accessed with the directive

#include "marmoteCore/marmoteBinarySequence.h"

Constructors. The class has a single constructor:

BinarySequence(int n);

The parameter n is the length of the sequence. The set has then 2n states.
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Re-implemented methods. The following methods are re-implemented in the class:

bool IsFinite();
bool IsFirst(MarmoteState);
void FirstState(MarmoteState);
void NextState(MarmoteState);
void DecodeState(int index, int* buf);
int Index(int* buf);
void PrintState(FILE* out, MarmoteState);

The first state is the sequence (0, . . . , 0). States are ordered lexicographically so that the index of state
(s1, . . . , sd) is given by the formula:

index(s1, . . . , sd) =

d∑
i=1

si 2
d−i .

The PrintState() method writes the state value as a sequence of bits (0 or 1) between parentheses and
separated by white spaces. Example: ( 1 1 1 0 0 0 1 0 1 ).

Specific methods. The class does not provide specific methods. In particular, the value n used for creating
the object cannot be directly accessed after the creation.

3.4.2.6 BinarySimplex

The BinarySimplex class represents sequences (or words) of bits in which the number of ones is constant.
Formally,

Sn,p := {σ ∈ {0, 1}n, |σ|1 = p}.

These sets are always finite, with cardinal
(
n
p

)
.

Definition. This class is accessed with the directive

#include "marmoteCore/marmoteBinarySimplex.h"

Constructors. The class provides a single constructor:

BinarySimplex(int n, int p);

The parameter n specifies the length of the sequence, and p specifies the number of ones. It is required that
0 ≤ p ≤ n, although this condition is not currently enforced.

Re-implemented methods.

bool IsFinite();
bool IsFirst(MarmoteState);
void FirstState(MarmoteState);
void NextState(MarmoteState);
void DecodeState(int index, int* buf);
int Index(int* buf);
void PrintState(FILE* out, MarmoteState);
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The first state is the sequence (1, . . . , 1, 0, . . . , 0) where the p ones are leading the sequence. States are
ordered lexicographically with letter order 1 < 0. The index of state (s1, . . . , sn) is given by the recursive
formula:

index(n, p; s1, . . . , sn) =


index(n− 1, p− 1; s2, . . . , sn) if s1 = 1(
n− 1

p− 1

)
+ index(n− 1, p; s2, . . . , sn) if s1 = 0

with the boundary condition index(n, 0; 0, . . . , 0) = 0.
The PrintState() method writes the state value as a sequence of bits (0 or 1) between parentheses and

separated by white spaces. Example: ( 1 1 1 0 0 0 1 0 1 ).

Specific methods. The class does not provide specific methods. In particular, the values n and p used
for creating the object cannot be directly accessed after the creation.

3.4.2.7 Simplex

The Simplex class represents sequences of nonnegative integer numbers with a given total sum. Formally,

Sn,p := {σ ∈ Nn,

n∑
i=1

σn = p}.

These sets are always finite, with cardinal:
(
n+p−1
n−1

)
.

Definition. This class is accessed with the directive

#include "marmoteCore/marmoteSimplex.h"

Constructors. The class provides a single constructor:

Simplex(int n, int p);

The parameter n specifies the length of the sequence, and p specifies the total sum.

Re-implemented methods.

bool IsFinite();
void DecodeState(int index, int* buf);
int Index(int* buf);
void PrintState(FILE* out, MarmoteState);

The first state is the sequence (0, 0, . . . , 0, p). States are ordered lexicographically. That the index of
state (s1, . . . , sn) is given by the recursive formula:

index(n, p; s1, . . . , sn) =

 0 if n = 1

L(s1, n, p) + index(n− 1, p− s1; s2, . . . , sn) if n ≥ 2

where

L(j, n, p) =

j−1∑
i=0

(
p− i+ k − 2

k − 2

)
.

The PrintState() method writes the state value as a sequence of numbers between parentheses and
separated by white spaces. Example: ( 1 4 1 0 0 0 7 0 1 ).

40



Specific methods. The class does not provide specific methods. In particular, the values n and p used
for creating the object cannot be directly accessed after the creation.

3.5 The Distribution object
3.5.1 Common features
3.5.1.1 Definition

This class is accessed with the directive

#include "marmoteCore/marmoteDistribution.h"

3.5.1.2 Constants and types

Some constants are specifically defined for Distribution objects.

distType : type of distances between distributions; existing values are DISTANCE_L1, DISTANCE_L2, DISTANCE
_LINFINITY, DISTANCE_TV (for the total variation distance);

INFINITE_DURATION : representation of infinity, in the case where some moments of the distribution can be
infinite;

INFINITE_RATE : representation of infinity, in the case where the “rate” is a meaningful concept for the
distribution, and its mathematical value is infinity (inverse of 0).

3.5.1.3 Attributes and accessors

Distribution objects have one common attribute:

double mean_ the mathematical expectation of the distribution

The methods common to Distribution objects are summarized in the following table.

double Mean() mathematical expectation
double Rate() inverse of the mean
double Moment(int n) n-th moment
double Variance(); variance
double Laplace(double s) Laplace transform evaluated at real s
double DLaplace(double s) derivative of the Laplace transform
double Cdf(double x) cumulative distribution function
double Ccdf(double x) complementary cumulative distribution function
bool HasMoment(int n) check that moments exist
Distribution* Rescale(double factor) scaling the distribution by a real factor
Distribution* Copy()
double Sample() generate a pseudo-random sample from the distribution
void IidSample(int n, double* s) generate several samples
double Distance(distType, Distribution*, compute some distance for distributions

Distribution*)
bool HasProperty(std::string) tests whether the distribution has some property
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The Cdf() and Ccdf() methods return respectively, for x supplied as argument:

FX(x) := P (X ≤ x) P (X > x) = 1− FX(x).

In addition to the generic Distance() method, some shorthand forms exist for the four distances of the
distType type: DistanceL1(Distribution*,Distribution*), DistanceL2(Distribution*,Distribution*),
DistanceLInfinity(Distribution*,Distribution*), DistanceTV(Distribution*,Distribution*). Not
all distances are defined for all distributions, and even when defined, not all are implemented.

3.5.2 Implementations
The following distributions are implemented:

Name description inherits from
DiscreteDistribution finite discrete distribution Distribution
DiracDistribution Dirac mass DiscreteDistribution
BernoulliDistribution Bernoulli distribution DiscreteDistribution
UniformDiscreteDistribution uniform distribution over integer intervals DiscreteDistribution
ShiftedGeometricDistribution geometric distribution over {a, a+ 1, . . . } DiscreteDistribution
GeometricDistribution geometric distribution over N ShiftedGeometricDistribution
PoissonDistribution Poisson distribution DiscreteDistribution
PhaseTypeDiscreteDistribution discrete phase-type distribution DiscreteDistribution
GammaDistribution Gamma distribution Distribution
ErlangDistribution Erlang distribution GammaDistribution
ExponentialDistribution negative exponential distribution ErlangDistribution
GaussianDistribution univariate gaussian distribution Distribution
UniformDistribution uniform continuous distribution Distribution
PhaseTypeDistribution continuous phase-type distribution Distribution

3.5.2.1 DiscreteDistribution

This is the general finite discrete distribution. It consists in a list of n values v1, . . . , vn and a list of n
probabilities p1, . . . , pn.

Definition. This class is accessed with the directive

#include "marmoteCore/marmoteDiscreteDistribution.h"

Constructors. The class provides two constructors.

DiscreteDistribution( int sz, double* vals, double* probas );
DiscreteDistribution( int sz, char *name );

The first one creates the object from existing tables of values and probabilities. These arrays must be (at
least) of size sz. They are copied in the object that is created. The second constructor reads the distribution
from the file which name is provided as argument name. The file should consist in sz real numbers, one per
line. They should be positive and add up to 1.0, although this is not currently enforced. If anything goes
wrong with the file (not accessible, too short, ...) missing probabilities are assumed to be 0. The values are
implicitly assume to be 0, 1, ..., sz-1.

It is not assumed that the vi are distinct, nor ordered.
Both constructors calculate and store the expectation of the distribution.
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Re-implemented methods. The following methods are re-implemented in the class.

double Mean();
double Moment( int order );
double Cdf( double x );
bool HasMoment( int order );
DiscreteDistribution *Rescale( double factor );
DiscreteDistribution *Copy();
double Sample();

These distributions have moments of any order: the method HasMoment() always returns true. Rescaling
by a factor f produces a distribution on values f × v1, . . . , f × vn and the same probabilities. The Sample()
produces a pseudo-random sample of the distribution. It uses a simple linear algorithm and may be inefficient
for large values of n.

Specific methods. The following methods are specific to the class:
int nb_vals();
double* values();
double* probas();
double getProbaByIndex(int i);
double getProba(double value);
double getValue(int i);
bool setProba(int i, double v);
double distanceL1( DiscreteDistribution* d );
double distanceL2( DiscreteDistribution* d );
double distanceLinfinity( DiscreteDistribution* d );
void Write( FILE *out, int mode );

Methods nb_vals(), values() and probas() are accessors to n and the tables of values and probabilities,
respectively.

Method getProbaByIndex() returns pi where i is specified by i. The user has no control on the order of
the entries. This method is normally used to browse through all probabilities. Method getValue() returns
vi where i is given by parameter i. A tolerance of 10−8 is applied to the parameter value.

Method getProba() returns the probability of the value v. Since values vi are not necessarily distinct,
this is computed as

∑
{pj |vj = v}. This method may be inefficient for large values of n.

Method setProba() allows to change the value pi where i is spefified as arguement. The resulting object
is not necessarily a distribution anymore. Its mean is incorrect. To be used with caution (or not at all).

The methods DistanceL1(), DistanceL2() and DistanceLinfinity() compute respectively:

n∑
i=1

|pi − p′i|,

√√√√ n∑
i=1

|pi − p′i|2, max {|pi − p′i|, 1 ≤ i ≤ n} .

They all assume implicitly that the set of values is the same for the distributions that are compared.
The Write() method prints a representation of the distribution on file descriptor out with format specified

as mode. Available formats are DEFAULT_PRINT_MODE and MAPLE_PRINT_MODE. They produce respective
results as:

discrete [ v1 v2 ... vn ] [ p1 p2 ... pn ]
Vector( [ p1, p2, ..., pn ] );

3.5.2.2 DiracDistribution

This is the Dirac distribution, concentrated at some value v. It is a special case of finite discrete distribution
and the class inherits from DiscreteDistribution.
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Definition. This class is accessed with the directive

#include "marmoteCore/marmoteDiracDistribution.h"

Constructors. There is only one constructor to this class:

DiracDistribution( double val )

Re-implemented methods.

double Mean();
double Rate();
double Moment( int order );
double Variance();
double Laplace( double s );
double DLaplace( double s );
double Cdf( double x );
bool HasMoment( int order );
DiracDistribution *Rescale( double factor );
DiracDistribution *Copy();
double Sample();
void IidSample( int n, double* s );
double getProba(double value);
void Write( FILE *out, int mode );

These distributions have moments of any order: the method HasMoment() always returns true. Rescaling
by a factor f produces a Dirac distribution on value f × v.

Methods getProba() and Write() reimplement the methods from DiscreteDistribution. The last
one writes "Dirac distribution at v" whatever the format specified.

Specific methods. The following method is specific to the class:

double value(int);

It is an accessor for v.

3.5.2.3 BernoulliDistribution

This is the Bernoulli distribution with parameter p. It is the distribution {0, 1} with probabilities p and
1− p. It is a special case of finite discrete distribution and the class inherits from DiscreteDistribution.

Definition. This class is accessed with the directive

#include "marmoteCore/marmoteBernoulliDistribution.h"

Constructors. The class has a single constructor:

BernoulliDistribution( double val );

Its parameter is the probability p.
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Re-implemented methods.

double Mean();
double Rate();
double Moment( int order );
double Cdf( double x );
bool HasMoment( int order );
BernoulliDistribution *Rescale( double factor );
BernoulliDistribution *Copy();
double Sample();
void Write( FILE *out, int mode );

These distributions have moments of any order: the method HasMoment() always returns true. Rescaling
is not possible and returns a copy of the original distribution.

Method Write() reimplement the method from DiscreteDistribution. It writes "Bernoulli distribution
with proba p" whatever the mode specified.

Specific methods. The following methods are specific to the class:

double getParameter();
double proba();

Both methods getParameter() and proba() are accessors to the parameter p.

3.5.2.4 UniformDiscreteDistribution

This is the uniform distribution over some integer interval a..b = {a, a+ 1, . . . , b− 1, b}. It is a special case
of finite discrete distribution and the class inherits from DiscreteDistribution.

Definition. This class is accessed with the directive

#include "marmoteCore/marmoteUniformDiscreteDistribution.h"

Constructors. The class has a single constructor:

UniformDiscreteDistribution( int valInf, int valSup );

It defines the values of a and b by parameters valInf and valSup respectively. It is necessary that a ≤ b
although this is not currently enforced.

Re-implemented methods.

double Mean();
double Rate();
double Moment( int order );
double Laplace( double s );
double DLaplace( double s );
double Cdf( double x );
double Ccdf( double x );
bool HasMoment( int order );
PhaseTypeDistribution *Rescale( double factor );
PhaseTypeDistribution *Copy();
double Sample();
void IidSample( int n, double* s );
double getProba(double value);
void Write( FILE *out, int mode );
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These distributions have moments of any order: the method HasMoment() always returns true. Rescaling
is not possible and returns a copy of the original distribution.

Method Write() reimplement the method from DiscreteDistribution. It writes "uniform distribution
on [a..b]" whatever the mode specified.

Specific methods. The following methods are specific to the class:

int valInf();
int valSup();

They give access to the parameters a and b respectively.

3.5.2.5 ShiftedGeometricDistribution

This is the geometric distribution on the set {a, a + 1, . . .} where a ∈ N. It has two parameters: an integer
offset a which is the smallest value the random variable can take, and a probability p, interpreted as the
probability that X is strictly larger than a. In other words, the distribution is:

P (X = k) = (1− p) pk−a, k ∈ N, k ≥ a.

The value p = 1 is accepted, in which case the distribution is interpreted as a Dirac mass at infinity. Its
mean and higher moments are then infinite.

Definition. This class is accessed with the directive

#include "marmoteCore/marmoteShiftedGeometricDistribution.h"

Constructors. The class has a single constructor,

ShiftedGeometricDistribution( long int offset, double p );

which sets the parameters a (the “offset”) and p.

Re-implemented methods.

double getProbaByIndex(cardinalType idx);
double getProba(double k);
double Mean();
double Rate();
double Moment( int order );
double Variance( int order );
double Laplace( double s );
double DLaplace( double s );
double Cdf( double x );
bool HasMoment( int order );
GeometricDistribution *Rescale( double factor );
GeometricDistribution *Copy();
double Sample();
void Write( FILE *out, int mode );

These distributions have moments of any order, except when p = 1. Rescaling is not possible and returns a
copy of the original distribution. Method Write() is available only for default format FORMAT_MARMOTE and
writes "ShiftedGeometric on [a..+oo) with proba p: P(k) = (1− p) x (p)ˆ(k-a) k=a..+oo".
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Specific methods. The following methods are specific to the class:

long int offset();
double p();
double getRatio();

The method offset() gives access to the parameter a. Observe that its return type is double. Both
methods p() and getRatio() give access to the parameter p. Methods getProba() returns the probability
P (X = k).

3.5.2.6 GeometricDistribution

This is the geometric distribution on N. It has one parameter, a probability p, interpreted as the probability
that X is not 0. In other words, the distribution is:

P (X = k) = (1− p) pk, k ∈ N.

The value p = 1 is accepted, in which case the distribution is interpreted as a Dirac mass at infinity. Its
mean and higher moments are then infinite.

Since it is a particular case of ShiftedGeometricDistribution with offset a = 0, the class inherits from
it.

Definition. This class is accessed with the directive

#include "marmoteCore/marmoteGeometricDistribution.h"

Constructors. The class has a single constructor,

GeometricDistribution( double p );

which sets the parameter p.

Re-implemented methods.

double getProbaByIndex(cardinalType idx);
double getProba(double k);
double Mean();
double Rate();
double Moment( int order );
double Variance( int order );
double Laplace( double s );
double DLaplace( double s );
double Cdf( double x );
bool HasMoment( int order );
GeometricDistribution *Rescale( double factor );
GeometricDistribution *Copy();
double Sample();
void Write( FILE *out, int mode );

These distributions have moments of any order, except when p = 1. Rescaling is not possible and re-
turns a copy of the original distribution. Method Write() accepts the standard format FORMAT_MARMOTE
but also the Maple format FORMAT_MAPLE. In the first case, it writes: "Geometric on N with proba p:
P(k) = (1 − p) x (p)ˆk, k=0..+oo". In the second case, it writes: "Statistics[RandomVariable](
GeometricDistribution( 1− p ) )".
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Specific methods. None.

3.5.2.7 PoissonDistribution

This is the Poisson distribution with some real parameter λ. It is given by:

P (X = k) =
λk

k!
e−λ, k ∈ N.

Definition. This class is accessed with the directive

#include "marmoteCore/marmotePoissonDistribution.h"

Constructors. The class has a single constructor,

PoissonDistribution( double lambda );

which sets the parameter λ. The value of λ should be positive, although this is not currently enforced.

Re-implemented methods.

double getProba( double k );
double Mean();
double Rate();
double Moment( int order );
double Variance();
double Laplace( double s );
double DLaplace( double s );
double Cdf( double x );
double Ccdf( double x );
bool HasMoment( int order );
PoissonDistribution *Rescale( double factor );
PoissonDistribution *Copy();
double Sample();
void IidSample( int n, double* s );
void Write( FILE *out, int mode );

These distributions have moments of any order: the method HasMoment() always returns true. Rescaling a
Poisson distribution by a factor f returns a Poisson distribution with parameter λ× f .

Sampling from this distribution is possible only when R is enabled. This feature is not available in the
current version.

Method Write() accepts the standard format FORMAT_MARMOTE but also the Maple format FORMAT_MAPLE.
In the first case, it writes: "Poisson with rate λ". In the second case, it writes: "Statistics[RandomVariable](
PoissonDistribution( λ ) )".

Specific methods. The following method is specific to the class:

double lambda();

It is an accessor for parameter λ.
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3.5.2.8 GammaDistribution

This is the Gamma distribution with shape parameter k and scale parameter θ (or rate parameter λ = θ−1).
It is given by its density:

dP (X ≤ x) = λ
(λx)k−1

Γ(k)
e−λxdx, x ≥ 0.

The mean of the distribution is kθ.

Definition. This class is accessed with the directive

#include "marmoteCore/marmoteGammaDistribution.h"

Constructors. This class has a single constructor

GammaDistribution(double shape, double scale)

The shape parameter must be strictly positive. The scale parameter must be positive. It can be equal
to 0, in which case the distribution is equivalent to a Dirac distribution at 0. The rate parameter is then
infinite. If illegal parameters are supplied to the constructor, the default is returned, namely, the Exponential
distribution with parameter one, corresponding to k = λ = θ = 1.0.

Re-implemented methods. These methods are reimplemented from Distribution.

double Mean();
double Rate();
double Moment( int order );
double Variance();
double Laplace( double s );
double DLaplace( double s );
double Cdf( double x );
bool HasMoment( int order );
GammaDistribution *Rescale( double factor );
GammaDistribution *Copy();
double Sample();
void Write( FILE *out, int mode );
std::string toString();

These distributions have moments of any order: the method HasMoment() always returns true. Rescaling
results in a new Gamma distribution.

The methods Cdf() and Sample() are currently not implemented: the constant value 0.0 is returned,
with a warning.

Method Write() reimplements the method from Distribution. It accepts the standard format FORMAT_MARMOTE
but also the Maple format FORMAT_MAPLE. In the first case, it writes: "Gamma shape k rate λ". In the sec-
ond case, it writes: "Statistics[RandomVariable]( GammaDistribution( θ, k ) )".

Specific methods. None.

3.5.2.9 ErlangDistribution

This is the Erlang distribution with k phases of mean θ. It is actually the Gamma distribution with shape
parameter k and scale parameter θ (or rate parameter λ = θ−1. Accordingly, its density is

dP (X ≤ x) = λ
(λx)k−1

(k − 1)!
e−λxdx, x ≥ 0,
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its cdf is:

P (X ≤ x) = 1−
k−1∑
j=0

(λx)j

j!
e−λx, x ≥ 0,

and its mean is kθ. The class ErlangDistribution inherits from GammaDistribution.

Definition. This class is accessed with the directive

#include "marmoteCore/marmoteErlangDistribution.h"

Constructors. This class has a single constructor

ErlangDistribution(int phases, double scale)

The phases parameter is a strictly positive integer numbers. The scale parameter must be positive. It can
be equal to 0, in which case the distribution is equivalent to a Dirac distribution at 0. The rate parameter
is then infinite. If illegal parameters are supplied to the constructor, the default is returned, namely, the
Exponential distribution with parameter one, corresponding to k = 1, λ = θ = 1.0.

Re-implemented methods. These methods are reimplemented from GammaDistribution.

double Mean();
double Rate();
double Moment( int order );
double Variance();
double Laplace( double s );
double DLaplace( double s );
double Cdf( double x );
bool HasMoment( int order );
ErlangDistribution *Rescale( double factor );
ErlangDistribution *Copy( double factor );
double Sample();
void Write( FILE *out, int mode );
std::string toString();

These distributions have moments of any order: the method HasMoment() always returns true. Rescaling
results in a new Erlang distribution.

Method Write() reimplements the method from GammaDistribution. It accepts the standard format
FORMAT_MARMOTE but also the Maple format FORMAT_MAPLE. In the first case, it writes: "Erlang phases k
rate λ". In the second case, it writes: "Statistics[RandomVariable]( ErlangDistribution( θ, k )
)".

Specific methods. None.

3.5.2.10 ExponentialDistribution

This is the exponential distribution with parameter λ. It is given by:

P (X ≤ x) = 1− e−λx, x ≥ 0.

This parameter λ is the rate. The mean of the distribution is 1/λ.
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Definition. This class is accessed with the directive

#include "marmoteCore/marmoteExponentialDistribution.h"

Constructors. This class has a single constructor

ExponentialDistribution(double m)

The value m is the mean of the random variable. It may be equal to 0, in which case the rate parameter λ
is infinite. The mean should be positive. If an illegal parameter is provided, the default Exponential(1.0) is
returned.

Re-implemented methods.

double Mean();
double Rate();
double Moment( int order );
double Variance();
double Laplace( double s );
double DLaplace( double s );
double Cdf( double x );
bool HasMoment( int order );
ExponentialDistribution *Rescale( double factor );
ExponentialDistribution *Copy();
double Sample();
void Write( FILE *out, int mode );
std::string toString();

These distributions have moments of any order: the method HasMoment() always returns true. Rescaling
results in a new exponential distribution.

Method Write() reimplements the method from ErlangDistribution. It accepts the standard for-
mat FORMAT_MARMOTE but also the Maple format FORMAT_MAPLE. In the first case, it writes: "Exponential
distribution with mean 1/λ". In the second case, it writes: "Statistics[RandomVariable]( Exponential
Distribution( 1/λ ) )". The toString() method returns "Exponential(m=1/λ)".

Specific methods. None.

3.5.2.11 UniformDistribution

This is the uniform distribution over some real interval [a, b]. It is given by

P (X ≤ x) = max

{
0,min

{
1,

x− a

b− a

}}
.

Definition. This class is accessed with the directive

#include "marmoteCore/marmoteUniformDistribution.h"

Constructors. The class has a single constructor:

UniformDistribution( double inf, double sup )

where inf and sup denote a and b. The values should be such that a ≤ b although this is not currently
enforced.
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Re-implemented methods.

double Mean();
double Rate();
double Moment( int order );
double Laplace( double s );
double DLaplace( double s );
double Cdf( double x );
bool HasMoment( int order );
UniformDistribution *Rescale( double factor );
UniformDistribution *Copy();
double Sample();
double IidSample();
void Write( FILE *out, int mode );

Methods Rescale() and Copy() return UniformDistribution objects.

Specific methods. The following methods are specific to the class:

double valInf()
double valSup()

These are the accessors to the values of a and b, respectively.

3.5.2.12 GaussianDistribution

This is the scalar (univariate) Gaussian distribution. It is specified by two parameters: its mean m and
variance v. The variance is the square of the standard deviation σ. The distribution is given by its density:

dP
dx

(X ≤ x) =
1√
2πv

exp

(
− (x−m)2

2v

)
.

Definition. This class is accessed with the directive

#include "marmoteCore/marmoteGaussianDistribution.h"

Constructors. This class has a single constructor:

GaussianDistribution( double mean, double variance )

which sets parameters m and v.

Re-implemented methods.

double Mean();
double Rate();
double Moment( int order );
double Laplace( double s );
double DLaplace( double s );
double Cdf( double x );
double Ccdf( double x );
bool HasMoment( int order );
UniformDistribution *Rescale( double factor );
UniformDistribution *Copy();
double Sample();
void Write( FILE *out, int mode );
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These distributions have moments of any order: the method HasMoment() always returns true. Rescaling
by a factor f produces a Gaussian distribution with mean f ×m and variance f2 × v.

Method Write() reimplements the method from Distribution. It accepts the standard format FORMAT_MARMOTE
but also the Maple format FORMAT_MAPLE. In the first case, it writes: "Gaussian mean m variance v". In
the second case, it writes: "Statistics[RandomVariable]( GaussianDistribution( m, v1/2 ) )".

Specific methods. The following method is specific to the class:

double Variance()

It gives access to parameter v.

3.5.2.13 PhaseTypeDistribution

This class represents the phase-type distribution with a discrete (and finite) phase space. It is characterized
by a continuous-time transition structure T and an initial distribution β on the phase space. The transition
structure is a priori ”sub-stochastic” so that jumps are possible to some state outside the phase state, called
the terminal state. The distribution is that of the time it takes for the continuous-time Markov chain with
generator T to hit the terminal state (i.e. exit the phase space), when it starts from distribution β. It may
be that the distribution is defective: when the terminal state is never reached with some positive probability.

Definition. This class is accessed with the directive

#include "marmoteCore/marmotePhaseTypeDistribution.h"

Constructors. The class has a single constructor:

PhaseTypeDistribution(TransitionStructure* T, DiscreteDistribution* beta );

It defines the values of T and β.

Re-implemented methods. The following methods are re-implemented from Distribution:

double Mean();
double Rate();
double Moment( int order );
double Variance();
double Laplace( double s );
double DLaplace( double s );
double Cdf( double x );
double Ccdf( double x );
bool HasMoment( int order );
UniformDiscreteDistribution *Rescale( double factor );
UniformDiscreteDistribution *Copy();
double Sample();
void IidSample( int n, double* s );
void Write( FILE *out, int mode );

The mean is given by the formula m = βT−11. In the defective case, this evaluates to INFINITE_DURATION.
The Moment() method is restricted to order 2; the second moment is m2 = 2βT−21. The distribution has
moments of all orders if m < ∞, so that the argument of HasMoment() is ignored. The computation of
cdf and its Laplace transform, Cdf(), Ccdf(), Laplace() and DLaplace(), is currently not implemented.
Rescaling by a factor f produces a phase-type distribution with same distribution β and phase transitions
fT .
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Sampling of the distribution with Sample() and IidSample() by simulating hitting times of the associ-
ated Markov chain (see Section 3.2.1.10).

The Write() method accepts only the standard format FORMAT_MARMOTE and produces as output:

Continuous-time Phase-type with rate matrix: [ ... ] and proba vector ...

Specific methods. The following methods are specific to the class:

TransitionStructure* trans() { return trans_; }
DiscreteDistribution* iDis() { return iDis_; }

They are the accessors to the parameters T and β of the distribution.

3.5.2.14 PhaseTypeDiscreteDistribution

This class represents the discrete-time phase-type distribution with a discrete (and finite) phase space. It is
characterized by a probability transition structure P and an initial distribution β on the phase space. The
transition structure is a priori sub-stochastic so that jumps are possible to some state outside the phase
state, called the terminal state. The distribution is that of the time (number of steps) it takes for the
continuous-time Markov chain with generator T to hit the terminal state (i.e. exit the phase space), when
it starts from distribution β. It may be that the distribution is defective: when the terminal state is never
reached with some positive probability.

Definition. This class is accessed with the directive

#include "marmoteCore/marmotePhaseTypeDiscreteDistribution.h"

Constructors. The class has a single constructor:

PhaseTypeDiscreteDistribution(TransitionStructure* T, DiscreteDistribution* beta );

Re-implemented methods. The following methods are re-implemented from Distribution:

double Mean();
double Rate();
double Moment( int order );
double Variance();
double Laplace( double s );
double DLaplace( double s );
double getProba(double value);
double getProbaByIndex(double value);
double Cdf( double x );
double Ccdf( double x );
bool HasMoment( int order );
UniformDiscreteDistribution *Rescale( double factor );
UniformDiscreteDistribution *Copy();
double Sample();
void IidSample( int n, double* s );
void Write( FILE *out, int mode );

The mean is given by the formula m = β(I−P )−11. In the defective case, this evaluates to INFINITE_DURATION.
The Moment() method is currently restricted to order 1. The distribution has moments of all orders if m < ∞,
so that the argument of HasMoment() is ignored. The computation of the Laplace transform, Laplace()
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and DLaplace(), is currently not implemented. Rescaling is not possible for these distributions: a copy is
returned by Rescale() with a warning message.

Sampling of the distribution with Sample() and IidSample() by simulating hitting times of the associ-
ated Markov chain (see Section 3.2.1.10).

The Write() method accepts only the standard format FORMAT_MARMOTE and produces as output:

Discrete-time Phase-type with rate matrix: [ ... ] and proba vector ...

Specific methods. The following methods are specific to the class:

TransitionStructure* trans() { return trans_; }
DiscreteDistribution* iDis() { return iDis_; }

They are the accessors to the parameters P and β of the distribution.
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Appendix A

Examples

The examples of use of marmoteCore are organized in two sets: Basic and Advanced.

A.1 Basic examples
The basic examples show how to construct simple Markov chains and call basic solution functions. We briefly
comment below the principal functionalities and programming specificities.

A.1.1 Example 1
This example creates a 3-state, discrete-time Markov chain, then performs a (Monte-Carlo) simulation of it.
The matrix is:

P =

0.25 0.5 0.25
0.4 0.2 0.4
0.4 0.3 0.3

 .

Usage:

example1 <n> <p1> <p2> <p3>

Here, n is the number of steps for the simulation, and p1, p2, p3 are the respective initial probabilities of
the three states.

Tasks performed:

• create a DiscreteDistribution object to hold the initial distribution of the process
• create a SparseMatrix object to hold the transition matrix of the chain, entry by entry with the

addToEntry() function;
• create a MarkovChain object and link the previous elements to it;
• output the Markov chain object to the screen;
• create a simulation of a trajectory and store it in a SimulationResult object;
• write the trajectory to the screen;
• clean up.

A.1.2 Example 2
This example creates the same 3-state discrete-time Markov chain as in Example 1, then computes the
transient distribution of the chain after a given number of steps. Usage:

example2 <n> <p1> <p2> <p3>
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Here, n is the number of steps for the transient distribution, and p1, p2, p3 are the respective initial
probabilities of the three states.

Tasks performed:

• create a DiscreteDistribution object to hold the initial distribution of the process
• create a SparseMatrix object to hold the transition matrix of the chain, entry by entry with the

addToEntry() function;
• create a MarkovChain object and link the previous elements to it;
• output the Markov chain object to the screen;
• calculate the transient distributions after n steps and store it in a Distribution object;
• write the distribution to the screen;
• clean up.

A.1.3 Example 3
This example creates three slightly different 8-state, discrete-time Markov chains, then computes the transient
distribution of the chain after a given number of steps. The matrices are:

P1 =



0.2 0.8
0.25 0.25 0.25 0.25
0.6 0.4

0.3 0.2 0.25 0.25
0.1 0.3 0.3 0.3

1.0
0.5 0.5
0.4 0.2 0.2 0.5


P2 =



0.2 0.8
0.25 0.25 0.25 0.25
0.6 0.4

0.3 0.2 0.25 0.25
0.1 0.3 0.3 0.3

0.5 0.5
0.5 0.5
0.4 0.2 0.2 0.5



P3 =



0.2 0.8
0.25 0.25 0.25 0.25
0.6 0.4

0.3 0.2 0.25 0.25
0.1 0.3 0.3 0.3

0.5 0.5
0.5 0.5
0.4 0.2 0.2 0.5


Usage:

example3 <n> <p1> <p2> <p3> <p4> <p5> <p6> <p7> <p8>

Here, n is the number of steps for the simulation, and p1, p2, etc. are the respective initial probabilities of
the eight states.

Tasks performed:

• create a DiscreteDistribution object to hold the initial distribution of the process
• create three SparseMatrix objects to hold the transition matrix of the chain, entry by entry with the

addToEntry() function;
• create three MarkovChain objects and link the previous elements to it;
• calculate the transient distributions after n steps for each Markov chain and store it in a Distribution

object;
• write the distributions to the screen;
• clean up.
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A.1.4 Example 4
This example creates two Markov chains by reading them from files, then outputs them to other files: either
as whole Markov chains, either only their generators. The matrices are:

P1 =



0.2 0.8
0.25 0.25 0.25 0.25
0.6 0.4

0.3 0.2 0.25 0.25
0.1 0.3 0.3 0.3

1
0.5 0.5
0.4 0.2 0.2 0.2


P2 =



0.6 0.4
0.3 0.3 0.4

0.3 0.3 0.4
0.3 0.3 0.4

0.3 0.3 0.4
0.3 0.3 0.4

0.3 0.3 0.4
0.3 0.7


Usage:

example4

Tasks performed:

• create two MarkovChain objects by reading their description in files IO_example_in1.mcl and IO_example_in2.mcl;
• output them again to files IO_example_out1.mcl and IO_example_out2.mcl;
• write the generator of these chains to files IO_example_mat1.mmt and IO_example_mat2.mmt;
• clean up.

A specificity is the test that the generator is present (not NULL) before attempting to write it to the file.
Indeed, if the file is not found, or not in the proper format, the chain is created but with an empty generator
(see Section 3.2.1.3).

A.1.5 Example 5
This example creates the same 3x3 Markov Chain as in Example 1, then tries two different methods for
computing the stationary distribution. The invariance of this distribution is tested. It is also compared with
a transient distribution. Usage:

example5

Tasks performed:

• create a random DiscreteDistribution object to hold the initial distribution of the process
• create a SparseMatrix object to hold the transition matrix of the chain, entry by entry with the

addToEntry() function;
• create a MarkovChain object and link the previous elements to it;
• compute the stationary distribution using methods StationaryDistribution() and StationaryDistributionPower()

(see Section 3.2.1.8);
• compute the one-step transient distribution π1, starting from one of these stationary distributions π∞

taken as initial distribution π0, and calculate the L1 distance ||π0 − π1||1;
• compute the 100-step transient distribution π100, starting from the random initial distribution, and

calculate the L1 distance ||π∞ − π100||1;
• clean up.

This example features the use of a UniformDistribution object to generate random values.
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A.1.6 Example 6
This example handles Set objects, more precisely one MarmoteInterval object, and MarmoteBox objects of
several dimensions. Usage:

example6

Tasks performed:

• create two MarmoteBox objects with one and two dimensions and one MarmoteInterval object
• enumerate them with different methods:

– use the member function Enumerate()

– use the walkthrough facilities FirstState()/NextState()/IsFirst()

– use the Cardinal()/DecodeState() facilities
• redo the test with upcast pointers of type MarmoteSet
• clean up.

A.1.7 Example 7
This example demonstrates the structural analysis possibilities for MarkovChain objects. Usage:

example7

Tasks performed:

• create four discrete-time SparseMatrix objects
• create four MarkovChain objects and set their generators to the previously created SparseMatrix

objects
• perform a structural analysis of the (graph of the) MarkovChains:

– run the Diagnose() utility on the generator
– find absorbing states with AbsorbingStates() and list them
– find communicating classes with CommunicatingClasses() and list them
– find recurrent classes with RecurrentClasses() and list them
– compute the period with Period() and print it

• clean up.

The four transition structures analyzed are displayed in Figure A.1. The three first of them are matrices
P1, P2 and P3 of Example 3. The probabilities of transitions are not represented since they are not relevant
to this analysis.

A.2 Advanced examples
A.2.1 Using complex MarmoteSet objects
TBD

A.2.2 Using the hierarchy of models
TBD
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Figure A.1: Diagrams of the four Markov chains analyzed in Example 7
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Appendix B

The Markov Zoo

A hierarchy of continuous-time models is proposed in the diagram below. Models featured in grey are those
currently impemented. Abbreviations used are: ASEP for Asymmetric Exclusion Process, MAP for Markov
Arrival Process (and not Markov Additive Process), BMAP for Batch Markov Arrival Process, IPP for
Interrupted Poisson Process, MMPP for Markov-Modulated Poisson Process, QBD for Quasi-Birth-Death.
Other names are classical in thir respective fields.

B.1 The Continuous-Time Markov Zoo

Queueing

Physics

Biology

M/M/1M/M/oo

MMPP/M/1BirthDeathBCMPG−net

Jackson

ContactProcess

IndependentOnOff

ASEP

BMAP

MAP

QBD

GeneralMarkov

TamuraNei93

Kimura80

Fensenstein81

JukesCantor69

PoissonSystem

TwoState

IPP

MMPP

Poisson

HomogeneousQBD

Yule−Furry

B.2 The Discrete-Time Markov Zoo
A hierarchy of discrete-time models is proposed in the diagram below. Models featured in grey are those
currently impemented. Abbreviations used are: GW for Galton-Watson, QBD for Quasi-Birth-Death, FC96
for Felsenstein-Churchill 96, CPED for Constant-Probability Event-Driven process. Other names are classical
in thir respective fields.
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Physics

Biology
GlauberIsing

FC96

CPED

GeneralMarkov

GeneralUrn

PolyaUrn

GraphRW

MultiGW

GW 1−D RW

k−D RW

QBD

IID

HomogeneousQBD

TwoState
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Appendix C

File formats

C.1 Xborne
The Xborne suite uses a multi-file format for representing matrices and the state spaces on which they are
defined.

Size. A file with extension .sz normally contains three integer numbers on three lines. The first line is the
number of non-zero entries, then the number of states reachable from the initial state, then the dimension
of the state space, considered as a subset of Nd.

State space. Xborne represents state spaces as a subset of Nd. The value of d is in the “.sz file. The
files with extensions .cd do the mapping between this multidimensional representation and the numbering
of states. States are numbered starting with 0. Each row of the file begins with the index number of some
state, and continues with the list of d coordinates, separated with white spaces or tabulations. States need
not be present in increasing index order in the file.

The following example testB3.cd from the distribution of Xborne, represents the state {0, 1, 2}3 with
27 elements.

0 0 0 0
1 1 0 0
2 2 0 0
3 0 1 0
4 1 1 0
5 2 1 0
6 0 2 0

...
21 0 1 2
22 1 1 2
23 2 1 2
24 0 2 2
25 1 2 2
26 2 2 2

Matrices. Matrices of Xborne are stored in different formats. marmoteCore uses primarily the “increasing
row/increasing column” format, abbreviated as “Rii”.

In the Rii format, each line starts with the origin state index. It is followed by the number of entries in
that row of the matrix. Then the entries themselves follow as pairs probability/destination state. All fields
are separated by white spaces.
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The following is the complete specification of the homogeneous 1-d random walk with 10 states and
left/right probabilities 0.3 and 0.4.

0 2 6.000000e-01 0 4.000000e-01 1
1 3 3.000000e-01 0 3.000000e-01 1 4.000000e-01 2
2 3 3.000000e-01 1 3.000000e-01 2 4.000000e-01 3
3 3 3.000000e-01 2 3.000000e-01 3 4.000000e-01 4
4 3 3.000000e-01 3 3.000000e-01 4 4.000000e-01 5
5 3 3.000000e-01 4 3.000000e-01 5 4.000000e-01 6
6 3 3.000000e-01 5 3.000000e-01 6 4.000000e-01 7
7 3 3.000000e-01 6 3.000000e-01 7 4.000000e-01 8
8 3 3.000000e-01 7 3.000000e-01 8 4.000000e-01 9
9 2 3.000000e-01 8 7.000000e-01 9

C.2 MARCA
The MARCA format is defined in William Stewart’s MARCA suite. It is one of the formats supported by
the PSI1 suite of programs.

The first line comprises three integer numbers, respectively the row dimension, the column dimension
and the number of non-zero entries of the matrix.

The second line is empty. The following ones list the entries as triples (i, j, Ti,j). States are numbered
starting from 1.

The following example is the complete specification of a homogeneous 1-d random walk with 5 states and
left/right probabilities 0.3 and 0.4.

5 5 13

1 1 6.000000e-01
1 2 4.000000e-01
2 1 3.000000e-01
2 2 3.000000e-01
2 3 4.000000e-01
3 2 3.000000e-01
3 3 3.000000e-01
3 4 4.000000e-01
4 3 3.000000e-01
4 4 3.000000e-01
4 5 4.000000e-01
5 4 3.000000e-01
5 5 7.000000e-01

C.3 Ers
A simple text format where transitions are listed as triples (i, j, Ti,j). The first line indicates whether the
model is discrete or continuous. The keyword sparse is implicit. The second line describes the size of the
state space. The following ones are the entries. The lists ends with the keyword stop. A last line specifies
the initial state.

States are numbered starting with 0.
The following example specifies a discrete-time Markov chain with 16 states and 0 initial state.

discrete sparse
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16
0 0 0.9091
0 4 0.0909
1 1 0.9091
...
stop
0

The following example specifies a continuous-time Markov chain with 101 states and 100 as initial state.
Observe that diagonal entries are not listed: they are deduced from the off-diagonal entries.

continuous sparse
101
0 1 1.000000
1 0 1.000000
1 2 0.500000
2 1 1.000000
2 3 0.333333
3 2 1.000000
3 4 0.250000
...
99 98 1.000000
100 99 1.000000
stop
100

C.4 R
The R output format is compatible with the markovchain package. It is a full matrix format. The Markov
chain is written as:

• a matrix, in the form: generator<-matrix(c(<entry>,<entry>,...),nrow=<size>,byrow=TRUE)

• a state space, in the form: statenames<-c("<name>","<name>",...)

• the chain itself, in the form: mc<-new("markovchain",states=statenames,transitionmatrix=generator)

C.5 Scilab
The Scilab output format is available only for transition structures. The matrix is written as:

gen = [<entry> <entry> <entry> ....; <entry> <entry> <entry> ....; ...];

C.6 Maple
The Maple output format is available only for transition structures. It uses the sparse matrix format of
Maple: entries are listed as a list of (i,j)=value. The user is responsible for wrapping this list into the
linalg/matrix or LinearAlgebra/Matrix formats.
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C.7 Matrix Market
The MatrixMarket output format is available only for transition structures. This format has been specified
by NIST, see: https://math.nist.gov/MatrixMarket/formats.html. There are two variants: the “coor-
dinate” format for sparse matrices, and the “array” format for full matrices. In general, a line beginning
with “%” is a comment.

• Sparse matrices: the file begins with the header
%%MatrixMarket matrix coordinate real general .

The first (non-comment) line contains three numbers: row size, column size and number of non-zero
entries. The entries then follow in the format row col value.
This format is similar to the MARCA format (Appendix C.2) except that the blank line after the size
specification is not mandatory. On the other hand, the format is “flexible” in the sense that extra
blank lines may be inserted.

• Full matrices: the file begins with the header
%%MatrixMarket matrix array real general .

The first (non-comment) line contains two numbers: row size and column size. The entries then follow,
one by row.

C.8 Harwell-Boeing (HB)
The Harwell-Boeing format (HB or HBF) is a compact coding of matrices. Its implementation in marmote
is pending.
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